Loading…
Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films
Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V O ) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ult...
Saved in:
Published in: | ACS applied materials & interfaces 2024-04 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c626-117746118803c677e1181f33e52b40066624c9ef68220c46241dec2abb0b28ce3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | ACS applied materials & interfaces |
container_volume | |
creator | Mellaerts, Simon Bellani, Claudio Hsu, Wei-Fan Binetti, Alberto Schouteden, Koen Recaman-Payo, Maria Menghini, Mariela Rubio-Zuazo, Juan López-Sánchez, Jesús Seo, Jin Won Houssa, Michel Locquet, Jean-Pierre |
description | Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V
O
) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V
O
films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively. |
doi_str_mv | 10.1021/acsami.3c18807 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_3c18807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38683636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-117746118803c677e1181f33e52b40066624c9ef68220c46241dec2abb0b28ce3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqVw5Yj8Agn-i-MeUdVCpaJeCtfgOBthFDuV7Ur07UmV0tPOandWsx9Cj5TklDD6rE3UzubcUKVIeYWmdC5EpljBri9aiAm6i_GHEMkZKW7RhCupuORyir4WvW-tBwc-ZWvfHAw0eB37eHQOUrAGv0PS3TCKh06nPuBd0D7aZHuPrccfXQo6fQ9qubdJ_1rd4U_M8BZzvLKdi_foptVdhIdznaHdarlbvGWb7et68bLJjGQyo7QshaSnJ7iRZQmDpC3nULBaDLmlZMLMoZWKMWLE0NEGDNN1TWqmDPAZysezJvQxBmirfbBOh2NFSXUiVY2kqjOpwfA0GvaH2kFzWf9Hw_8A8a5k2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Mellaerts, Simon ; Bellani, Claudio ; Hsu, Wei-Fan ; Binetti, Alberto ; Schouteden, Koen ; Recaman-Payo, Maria ; Menghini, Mariela ; Rubio-Zuazo, Juan ; López-Sánchez, Jesús ; Seo, Jin Won ; Houssa, Michel ; Locquet, Jean-Pierre</creator><creatorcontrib>Mellaerts, Simon ; Bellani, Claudio ; Hsu, Wei-Fan ; Binetti, Alberto ; Schouteden, Koen ; Recaman-Payo, Maria ; Menghini, Mariela ; Rubio-Zuazo, Juan ; López-Sánchez, Jesús ; Seo, Jin Won ; Houssa, Michel ; Locquet, Jean-Pierre</creatorcontrib><description>Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V
O
) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V
O
films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c18807</identifier><identifier>PMID: 38683636</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2024-04</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-117746118803c677e1181f33e52b40066624c9ef68220c46241dec2abb0b28ce3</cites><orcidid>0000-0002-2670-9347 ; 0000-0003-4937-0769 ; 0000-0002-6715-3066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38683636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mellaerts, Simon</creatorcontrib><creatorcontrib>Bellani, Claudio</creatorcontrib><creatorcontrib>Hsu, Wei-Fan</creatorcontrib><creatorcontrib>Binetti, Alberto</creatorcontrib><creatorcontrib>Schouteden, Koen</creatorcontrib><creatorcontrib>Recaman-Payo, Maria</creatorcontrib><creatorcontrib>Menghini, Mariela</creatorcontrib><creatorcontrib>Rubio-Zuazo, Juan</creatorcontrib><creatorcontrib>López-Sánchez, Jesús</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Houssa, Michel</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><title>Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V
O
) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V
O
films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EoqVw5Yj8Agn-i-MeUdVCpaJeCtfgOBthFDuV7Ur07UmV0tPOandWsx9Cj5TklDD6rE3UzubcUKVIeYWmdC5EpljBri9aiAm6i_GHEMkZKW7RhCupuORyir4WvW-tBwc-ZWvfHAw0eB37eHQOUrAGv0PS3TCKh06nPuBd0D7aZHuPrccfXQo6fQ9qubdJ_1rd4U_M8BZzvLKdi_foptVdhIdznaHdarlbvGWb7et68bLJjGQyo7QshaSnJ7iRZQmDpC3nULBaDLmlZMLMoZWKMWLE0NEGDNN1TWqmDPAZysezJvQxBmirfbBOh2NFSXUiVY2kqjOpwfA0GvaH2kFzWf9Hw_8A8a5k2w</recordid><startdate>20240429</startdate><enddate>20240429</enddate><creator>Mellaerts, Simon</creator><creator>Bellani, Claudio</creator><creator>Hsu, Wei-Fan</creator><creator>Binetti, Alberto</creator><creator>Schouteden, Koen</creator><creator>Recaman-Payo, Maria</creator><creator>Menghini, Mariela</creator><creator>Rubio-Zuazo, Juan</creator><creator>López-Sánchez, Jesús</creator><creator>Seo, Jin Won</creator><creator>Houssa, Michel</creator><creator>Locquet, Jean-Pierre</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2670-9347</orcidid><orcidid>https://orcid.org/0000-0003-4937-0769</orcidid><orcidid>https://orcid.org/0000-0002-6715-3066</orcidid></search><sort><creationdate>20240429</creationdate><title>Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films</title><author>Mellaerts, Simon ; Bellani, Claudio ; Hsu, Wei-Fan ; Binetti, Alberto ; Schouteden, Koen ; Recaman-Payo, Maria ; Menghini, Mariela ; Rubio-Zuazo, Juan ; López-Sánchez, Jesús ; Seo, Jin Won ; Houssa, Michel ; Locquet, Jean-Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-117746118803c677e1181f33e52b40066624c9ef68220c46241dec2abb0b28ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mellaerts, Simon</creatorcontrib><creatorcontrib>Bellani, Claudio</creatorcontrib><creatorcontrib>Hsu, Wei-Fan</creatorcontrib><creatorcontrib>Binetti, Alberto</creatorcontrib><creatorcontrib>Schouteden, Koen</creatorcontrib><creatorcontrib>Recaman-Payo, Maria</creatorcontrib><creatorcontrib>Menghini, Mariela</creatorcontrib><creatorcontrib>Rubio-Zuazo, Juan</creatorcontrib><creatorcontrib>López-Sánchez, Jesús</creatorcontrib><creatorcontrib>Seo, Jin Won</creatorcontrib><creatorcontrib>Houssa, Michel</creatorcontrib><creatorcontrib>Locquet, Jean-Pierre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mellaerts, Simon</au><au>Bellani, Claudio</au><au>Hsu, Wei-Fan</au><au>Binetti, Alberto</au><au>Schouteden, Koen</au><au>Recaman-Payo, Maria</au><au>Menghini, Mariela</au><au>Rubio-Zuazo, Juan</au><au>López-Sánchez, Jesús</au><au>Seo, Jin Won</au><au>Houssa, Michel</au><au>Locquet, Jean-Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2024-04-29</date><risdate>2024</risdate><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V
O
) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V
O
films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.</abstract><cop>United States</cop><pmid>38683636</pmid><doi>10.1021/acsami.3c18807</doi><orcidid>https://orcid.org/0000-0002-2670-9347</orcidid><orcidid>https://orcid.org/0000-0003-4937-0769</orcidid><orcidid>https://orcid.org/0000-0002-6715-3066</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-04 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_3c18807 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Confinement-Induced Isosymmetric Metal-Insulator Transition in Ultrathin Epitaxial V 2 O 3 Films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confinement-Induced%20Isosymmetric%20Metal-Insulator%20Transition%20in%20Ultrathin%20Epitaxial%20V%202%20O%203%20Films&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mellaerts,%20Simon&rft.date=2024-04-29&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c18807&rft_dat=%3Cpubmed_cross%3E38683636%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c626-117746118803c677e1181f33e52b40066624c9ef68220c46241dec2abb0b28ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38683636&rfr_iscdi=true |