Loading…

Nature of the Synergistic Effect of N and S Co-Doped Graphene for the Enhanced Simultaneous Determination of Toxic Pollutants

N-doped graphene (NG), S-doped graphene (SG), and N and S co-doped graphene nanocatalysts with different doping sequences (N-SG and S-NG) are successfully synthesized by a facile low-temperature hydrothermal method. By changing the synthetic sequence, S-NG significantly increases the electron transp...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2019-11, Vol.11 (47), p.44545-44555
Main Authors: Zhu, Weiqing, Gao, Juanjuan, Song, Haiou, Lin, Xuezhen, Zhang, Shupeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:N-doped graphene (NG), S-doped graphene (SG), and N and S co-doped graphene nanocatalysts with different doping sequences (N-SG and S-NG) are successfully synthesized by a facile low-temperature hydrothermal method. By changing the synthetic sequence, S-NG significantly increases the electron transport rate of the sensor and the electrocatalytic ability compared to NG, SG, and N-SG due to the optimal proportion of doping element content and suitable N- and S-bonding configurations. The origin of the synergistic effect of N and S co-doped graphene is confirmed. Traces of S doping greatly enhance the electrochemical performance. The large volume of S-Ox groups may prevent the analytes from approaching the catalytic sites of the sensing materials due to a steric hindrance effect. S-NG, which possesses less S-Ox groups, exhibits better performance than N-SG. Pyridinic N plays an important role in enhancing the electrochemical activity and conductivity. The simultaneous determination of aniline (AN), p-phenylenediamine (PPD), and nitrobenzene (NB) as typical toxic pollutants is performed by employing the S-NG nanoarchitecture. The detection limits (S/N = 3) for AN, PPD, and NB are 0.023, 0.051, and 0.216 μM, respectively. In addition, the S-NG sensors also have excellent anti-interference, stability, and reproducibility. The precise control and synthesis of multiheteroatoms into graphene represent a promising strategy to enhance the electrocatalytic performance in energy and environmental fields.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b13211