Loading…
Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation
In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations togeth...
Saved in:
Published in: | ACS applied materials & interfaces 2020-02, Vol.12 (5), p.6581-6589 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3 |
container_end_page | 6589 |
container_issue | 5 |
container_start_page | 6581 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Garg, Vivek Kamaliya, Bhaveshkumar Singh, Ritesh Kumar Panwar, Ajay Singh Fu, Jing Mote, Rakesh G |
description | In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices. |
doi_str_mv | 10.1021/acsami.9b17941 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b17941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c820626087</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwMqLMSCm-2EmcEVV8VGphaPfIcWzkyrUjOxbiv8fQ0o3pTvd-7-n0ELoFPAdcwAMXge_1vOmgbiicoSk0lOasKIvz007pBF2FsMO4IgUuL9GEQAO4gnqKPhfOjt4ZI_tsza0eouGjdjbjNh2iGXUQ3Mhs7XpptP3InMo2MQzS9smx0UaLBL9x68LooxijlyGLSfRJHGW-GaTQSotsmbCl97zXv_nX6EJxE-TNcc7Q9vlpu3jNV-8vy8XjKueE4DEvOigLJSnlDVayrqEGgRmDRgHty5qUTSUFA8JoV3PFCGWUdVxUvSwIKE5maH6IFd6F4KVqB6_33H-1gNufAttDge2xwGS4OxiG2O1lf8L_GkvA_QFIxnbnorfp_f_SvgFsD31K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</creator><creatorcontrib>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</creatorcontrib><description>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17941</identifier><identifier>PMID: 31910617</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-02, Vol.12 (5), p.6581-6589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</citedby><cites>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</cites><orcidid>0000-0002-5314-5225 ; 0000-0001-7853-5150 ; 0000-0001-6245-6896 ; 0000-0001-5095-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31910617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garg, Vivek</creatorcontrib><creatorcontrib>Kamaliya, Bhaveshkumar</creatorcontrib><creatorcontrib>Singh, Ritesh Kumar</creatorcontrib><creatorcontrib>Panwar, Ajay Singh</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Mote, Rakesh G</creatorcontrib><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwMqLMSCm-2EmcEVV8VGphaPfIcWzkyrUjOxbiv8fQ0o3pTvd-7-n0ELoFPAdcwAMXge_1vOmgbiicoSk0lOasKIvz007pBF2FsMO4IgUuL9GEQAO4gnqKPhfOjt4ZI_tsza0eouGjdjbjNh2iGXUQ3Mhs7XpptP3InMo2MQzS9smx0UaLBL9x68LooxijlyGLSfRJHGW-GaTQSotsmbCl97zXv_nX6EJxE-TNcc7Q9vlpu3jNV-8vy8XjKueE4DEvOigLJSnlDVayrqEGgRmDRgHty5qUTSUFA8JoV3PFCGWUdVxUvSwIKE5maH6IFd6F4KVqB6_33H-1gNufAttDge2xwGS4OxiG2O1lf8L_GkvA_QFIxnbnorfp_f_SvgFsD31K</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Garg, Vivek</creator><creator>Kamaliya, Bhaveshkumar</creator><creator>Singh, Ritesh Kumar</creator><creator>Panwar, Ajay Singh</creator><creator>Fu, Jing</creator><creator>Mote, Rakesh G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5314-5225</orcidid><orcidid>https://orcid.org/0000-0001-7853-5150</orcidid><orcidid>https://orcid.org/0000-0001-6245-6896</orcidid><orcidid>https://orcid.org/0000-0001-5095-2163</orcidid></search><sort><creationdate>20200205</creationdate><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><author>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Vivek</creatorcontrib><creatorcontrib>Kamaliya, Bhaveshkumar</creatorcontrib><creatorcontrib>Singh, Ritesh Kumar</creatorcontrib><creatorcontrib>Panwar, Ajay Singh</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Mote, Rakesh G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Vivek</au><au>Kamaliya, Bhaveshkumar</au><au>Singh, Ritesh Kumar</au><au>Panwar, Ajay Singh</au><au>Fu, Jing</au><au>Mote, Rakesh G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-05</date><risdate>2020</risdate><volume>12</volume><issue>5</issue><spage>6581</spage><epage>6589</epage><pages>6581-6589</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31910617</pmid><doi>10.1021/acsami.9b17941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5314-5225</orcidid><orcidid>https://orcid.org/0000-0001-7853-5150</orcidid><orcidid>https://orcid.org/0000-0001-6245-6896</orcidid><orcidid>https://orcid.org/0000-0001-5095-2163</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-02, Vol.12 (5), p.6581-6589 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_9b17941 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Manipulation%20and%20Multiscale%20Modeling%20of%20Suspended%20Silicon%20Nanostructures%20under%20Site-Specific%20Ion%20Irradiation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Garg,%20Vivek&rft.date=2020-02-05&rft.volume=12&rft.issue=5&rft.spage=6581&rft.epage=6589&rft.pages=6581-6589&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17941&rft_dat=%3Cacs_cross%3Ec820626087%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31910617&rfr_iscdi=true |