Loading…

Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation

In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations togeth...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-02, Vol.12 (5), p.6581-6589
Main Authors: Garg, Vivek, Kamaliya, Bhaveshkumar, Singh, Ritesh Kumar, Panwar, Ajay Singh, Fu, Jing, Mote, Rakesh G
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3
cites cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3
container_end_page 6589
container_issue 5
container_start_page 6581
container_title ACS applied materials & interfaces
container_volume 12
creator Garg, Vivek
Kamaliya, Bhaveshkumar
Singh, Ritesh Kumar
Panwar, Ajay Singh
Fu, Jing
Mote, Rakesh G
description In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.
doi_str_mv 10.1021/acsami.9b17941
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b17941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c820626087</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxS0EoqWwMqLMSCm-2EmcEVV8VGphaPfIcWzkyrUjOxbiv8fQ0o3pTvd-7-n0ELoFPAdcwAMXge_1vOmgbiicoSk0lOasKIvz007pBF2FsMO4IgUuL9GEQAO4gnqKPhfOjt4ZI_tsza0eouGjdjbjNh2iGXUQ3Mhs7XpptP3InMo2MQzS9smx0UaLBL9x68LooxijlyGLSfRJHGW-GaTQSotsmbCl97zXv_nX6EJxE-TNcc7Q9vlpu3jNV-8vy8XjKueE4DEvOigLJSnlDVayrqEGgRmDRgHty5qUTSUFA8JoV3PFCGWUdVxUvSwIKE5maH6IFd6F4KVqB6_33H-1gNufAttDge2xwGS4OxiG2O1lf8L_GkvA_QFIxnbnorfp_f_SvgFsD31K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</creator><creatorcontrib>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</creatorcontrib><description>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b17941</identifier><identifier>PMID: 31910617</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-02, Vol.12 (5), p.6581-6589</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</citedby><cites>FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</cites><orcidid>0000-0002-5314-5225 ; 0000-0001-7853-5150 ; 0000-0001-6245-6896 ; 0000-0001-5095-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31910617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garg, Vivek</creatorcontrib><creatorcontrib>Kamaliya, Bhaveshkumar</creatorcontrib><creatorcontrib>Singh, Ritesh Kumar</creatorcontrib><creatorcontrib>Panwar, Ajay Singh</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Mote, Rakesh G</creatorcontrib><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxS0EoqWwMqLMSCm-2EmcEVV8VGphaPfIcWzkyrUjOxbiv8fQ0o3pTvd-7-n0ELoFPAdcwAMXge_1vOmgbiicoSk0lOasKIvz007pBF2FsMO4IgUuL9GEQAO4gnqKPhfOjt4ZI_tsza0eouGjdjbjNh2iGXUQ3Mhs7XpptP3InMo2MQzS9smx0UaLBL9x68LooxijlyGLSfRJHGW-GaTQSotsmbCl97zXv_nX6EJxE-TNcc7Q9vlpu3jNV-8vy8XjKueE4DEvOigLJSnlDVayrqEGgRmDRgHty5qUTSUFA8JoV3PFCGWUdVxUvSwIKE5maH6IFd6F4KVqB6_33H-1gNufAttDge2xwGS4OxiG2O1lf8L_GkvA_QFIxnbnorfp_f_SvgFsD31K</recordid><startdate>20200205</startdate><enddate>20200205</enddate><creator>Garg, Vivek</creator><creator>Kamaliya, Bhaveshkumar</creator><creator>Singh, Ritesh Kumar</creator><creator>Panwar, Ajay Singh</creator><creator>Fu, Jing</creator><creator>Mote, Rakesh G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5314-5225</orcidid><orcidid>https://orcid.org/0000-0001-7853-5150</orcidid><orcidid>https://orcid.org/0000-0001-6245-6896</orcidid><orcidid>https://orcid.org/0000-0001-5095-2163</orcidid></search><sort><creationdate>20200205</creationdate><title>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</title><author>Garg, Vivek ; Kamaliya, Bhaveshkumar ; Singh, Ritesh Kumar ; Panwar, Ajay Singh ; Fu, Jing ; Mote, Rakesh G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Vivek</creatorcontrib><creatorcontrib>Kamaliya, Bhaveshkumar</creatorcontrib><creatorcontrib>Singh, Ritesh Kumar</creatorcontrib><creatorcontrib>Panwar, Ajay Singh</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Mote, Rakesh G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Vivek</au><au>Kamaliya, Bhaveshkumar</au><au>Singh, Ritesh Kumar</au><au>Panwar, Ajay Singh</au><au>Fu, Jing</au><au>Mote, Rakesh G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-05</date><risdate>2020</risdate><volume>12</volume><issue>5</issue><spage>6581</spage><epage>6589</epage><pages>6581-6589</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, controlled bidirectional deformation of suspended nanostructures by site-specific ion irradiation is presented. Multiscale modeling of the bidirectional deformation of nanostructures by site-specific ion irradiation is presented, incorporating molecular dynamics (MD) simulations together with finite element analysis, to substantiate the bending mechanism. Strain engineering of the free-standing nanostructure is employed for controlled deformation through site-specific kiloelectronvolt ion irradiation experimentally using a focused ion beam. We report the detailed bending mechanism of suspended silicon (Si) nanostructures through ion-induced irradiations. MD simulations are presented to understand the ion–solid interactions, defects formation in the silicon nanowire. The atomic-scale simulations reveal that the ion irradiation-induced bidirectional bending occurs through the development of localized tensile–compressive stresses in the lattice due to defect formation associated with atomic displacements. With an increasing ion dose, the evolution of localized tensile to compressive stress is observed, developing the alternate bending directions calculated through finite element analysis. The findings of multiscale modeling are in excellent agreement with the bidirectional nature of bending observed through the experiments. The developed in situ approach for bidirectional controlled manipulation of nanostructures in this work can be used for nanofabrication of numerous novel three-dimensional configurations and can provide a route toward functional nanostructures and devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31910617</pmid><doi>10.1021/acsami.9b17941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5314-5225</orcidid><orcidid>https://orcid.org/0000-0001-7853-5150</orcidid><orcidid>https://orcid.org/0000-0001-6245-6896</orcidid><orcidid>https://orcid.org/0000-0001-5095-2163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-02, Vol.12 (5), p.6581-6589
issn 1944-8244
1944-8252
language eng
recordid cdi_crossref_primary_10_1021_acsami_9b17941
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Controlled Manipulation and Multiscale Modeling of Suspended Silicon Nanostructures under Site-Specific Ion Irradiation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Manipulation%20and%20Multiscale%20Modeling%20of%20Suspended%20Silicon%20Nanostructures%20under%20Site-Specific%20Ion%20Irradiation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Garg,%20Vivek&rft.date=2020-02-05&rft.volume=12&rft.issue=5&rft.spage=6581&rft.epage=6589&rft.pages=6581-6589&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b17941&rft_dat=%3Cacs_cross%3Ec820626087%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-2b152fe44a90fe77171c08819f14d573596ec81384b7af834848bac6de231fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31910617&rfr_iscdi=true