Loading…
Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches
The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired str...
Saved in:
Published in: | ACS applied materials & interfaces 2020-03, Vol.12 (12), p.14425-14432 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3 |
container_end_page | 14432 |
container_issue | 12 |
container_start_page | 14425 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Min, Hyeongho Jang, Siyeon Kim, Da Wan Kim, Jiwon Baik, Sangyul Chun, Sungwoo Pang, Changhyun |
description | The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired structure is formed to conformally contact with biological skin that may be rough and wet. The patch is patterned with a hexagonal mesh structure for water and air permeability. The patch films are suited for a strain sensor or a stretchable electrode as their piezoresistive responses can be controlled by changing the concentration of conductive fillers to polymeric polyurethane. The CPC patch with a hexagonal mesh pattern (HMP) can be easily stretched for a strain sensor and is insensitive to tensile strain, making the patch suitable as a stretchable electrode. Furthermore, the octopus-like structures formed on the skeleton of the HMP allow the patch to maintain strong adhesion underwater by easily draining excess water trapped between the patch and skin. The sensor patch ( |
doi_str_mv | 10.1021/acsami.9b23400 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsami_9b23400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b320791126</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHiVnoVvy0nbtcYxphYmDOTyWNHm1mf0xkg7Zf29n526e8gKf75f3PoTcczbmDPhEKicrM44zED5jF2TIY9_3Igjg8jz7_oDcOLdlLBTAgmsyEMAh4CIckioxn0V5oDNjJx-yReut0FYosxJpYtBKqwqjZElf0RV0dvy1qNq9RUfzxtJ1a7FVxS-_qTXa72MJXZQdZJvaKLr-MjVdyQ5Cd0uuclk6vDu9I7J5WrzPE2_59vwyny09KQRrPTlVQYaQRznXoJUAyOIs1hBGIXLMfR7pUAZCc-UzkQFq1d0fTKcaGMYMUIzIuO9VtnHOYp7urKmkPaScpUdvae8tPXnrAg99YLfPKtRn_E9UBzz2QBdMt83e1t3-_7X9AA0oefw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Min, Hyeongho ; Jang, Siyeon ; Kim, Da Wan ; Kim, Jiwon ; Baik, Sangyul ; Chun, Sungwoo ; Pang, Changhyun</creator><creatorcontrib>Min, Hyeongho ; Jang, Siyeon ; Kim, Da Wan ; Kim, Jiwon ; Baik, Sangyul ; Chun, Sungwoo ; Pang, Changhyun</creatorcontrib><description>The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired structure is formed to conformally contact with biological skin that may be rough and wet. The patch is patterned with a hexagonal mesh structure for water and air permeability. The patch films are suited for a strain sensor or a stretchable electrode as their piezoresistive responses can be controlled by changing the concentration of conductive fillers to polymeric polyurethane. The CPC patch with a hexagonal mesh pattern (HMP) can be easily stretched for a strain sensor and is insensitive to tensile strain, making the patch suitable as a stretchable electrode. Furthermore, the octopus-like structures formed on the skeleton of the HMP allow the patch to maintain strong adhesion underwater by easily draining excess water trapped between the patch and skin. The sensor patch (<50 wt % carbon nanotubes (CNTs)) can sensitively detect the bending strain of a finger, and the electrode patch (50 wt % CNTs with addition of Ag flakes) can stably measure biosignals (e.g., electrocardiogram signals) under both dry and wet conditions owing to the octopus-like structure and HMP.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b23400</identifier><identifier>PMID: 32125136</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air ; Humans ; Nanotubes, Carbon - chemistry ; Polymers - chemistry ; Polyurethanes - chemistry ; Tensile Strength ; Water - chemistry ; Wearable Electronic Devices</subject><ispartof>ACS applied materials & interfaces, 2020-03, Vol.12 (12), p.14425-14432</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3</citedby><cites>FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3</cites><orcidid>0000-0001-8339-7880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32125136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Min, Hyeongho</creatorcontrib><creatorcontrib>Jang, Siyeon</creatorcontrib><creatorcontrib>Kim, Da Wan</creatorcontrib><creatorcontrib>Kim, Jiwon</creatorcontrib><creatorcontrib>Baik, Sangyul</creatorcontrib><creatorcontrib>Chun, Sungwoo</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><title>Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired structure is formed to conformally contact with biological skin that may be rough and wet. The patch is patterned with a hexagonal mesh structure for water and air permeability. The patch films are suited for a strain sensor or a stretchable electrode as their piezoresistive responses can be controlled by changing the concentration of conductive fillers to polymeric polyurethane. The CPC patch with a hexagonal mesh pattern (HMP) can be easily stretched for a strain sensor and is insensitive to tensile strain, making the patch suitable as a stretchable electrode. Furthermore, the octopus-like structures formed on the skeleton of the HMP allow the patch to maintain strong adhesion underwater by easily draining excess water trapped between the patch and skin. The sensor patch (<50 wt % carbon nanotubes (CNTs)) can sensitively detect the bending strain of a finger, and the electrode patch (50 wt % CNTs with addition of Ag flakes) can stably measure biosignals (e.g., electrocardiogram signals) under both dry and wet conditions owing to the octopus-like structure and HMP.</description><subject>Air</subject><subject>Humans</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Polymers - chemistry</subject><subject>Polyurethanes - chemistry</subject><subject>Tensile Strength</subject><subject>Water - chemistry</subject><subject>Wearable Electronic Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4Mobk6vHiVnoVvy0nbtcYxphYmDOTyWNHm1mf0xkg7Zf29n526e8gKf75f3PoTcczbmDPhEKicrM44zED5jF2TIY9_3Igjg8jz7_oDcOLdlLBTAgmsyEMAh4CIckioxn0V5oDNjJx-yReut0FYosxJpYtBKqwqjZElf0RV0dvy1qNq9RUfzxtJ1a7FVxS-_qTXa72MJXZQdZJvaKLr-MjVdyQ5Cd0uuclk6vDu9I7J5WrzPE2_59vwyny09KQRrPTlVQYaQRznXoJUAyOIs1hBGIXLMfR7pUAZCc-UzkQFq1d0fTKcaGMYMUIzIuO9VtnHOYp7urKmkPaScpUdvae8tPXnrAg99YLfPKtRn_E9UBzz2QBdMt83e1t3-_7X9AA0oefw</recordid><startdate>20200325</startdate><enddate>20200325</enddate><creator>Min, Hyeongho</creator><creator>Jang, Siyeon</creator><creator>Kim, Da Wan</creator><creator>Kim, Jiwon</creator><creator>Baik, Sangyul</creator><creator>Chun, Sungwoo</creator><creator>Pang, Changhyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8339-7880</orcidid></search><sort><creationdate>20200325</creationdate><title>Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches</title><author>Min, Hyeongho ; Jang, Siyeon ; Kim, Da Wan ; Kim, Jiwon ; Baik, Sangyul ; Chun, Sungwoo ; Pang, Changhyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Air</topic><topic>Humans</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Polymers - chemistry</topic><topic>Polyurethanes - chemistry</topic><topic>Tensile Strength</topic><topic>Water - chemistry</topic><topic>Wearable Electronic Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Min, Hyeongho</creatorcontrib><creatorcontrib>Jang, Siyeon</creatorcontrib><creatorcontrib>Kim, Da Wan</creatorcontrib><creatorcontrib>Kim, Jiwon</creatorcontrib><creatorcontrib>Baik, Sangyul</creatorcontrib><creatorcontrib>Chun, Sungwoo</creatorcontrib><creatorcontrib>Pang, Changhyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Min, Hyeongho</au><au>Jang, Siyeon</au><au>Kim, Da Wan</au><au>Kim, Jiwon</au><au>Baik, Sangyul</au><au>Chun, Sungwoo</au><au>Pang, Changhyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-25</date><risdate>2020</risdate><volume>12</volume><issue>12</issue><spage>14425</spage><epage>14432</epage><pages>14425-14432</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The development of an electronic skin patch that can be used in underwater environments can be considered essential for fabricating long-term wearable devices and biomedical applications. Herein, we report a stretchable conductive polymer composite (CPC) patch on which an octopus sucker-inspired structure is formed to conformally contact with biological skin that may be rough and wet. The patch is patterned with a hexagonal mesh structure for water and air permeability. The patch films are suited for a strain sensor or a stretchable electrode as their piezoresistive responses can be controlled by changing the concentration of conductive fillers to polymeric polyurethane. The CPC patch with a hexagonal mesh pattern (HMP) can be easily stretched for a strain sensor and is insensitive to tensile strain, making the patch suitable as a stretchable electrode. Furthermore, the octopus-like structures formed on the skeleton of the HMP allow the patch to maintain strong adhesion underwater by easily draining excess water trapped between the patch and skin. The sensor patch (<50 wt % carbon nanotubes (CNTs)) can sensitively detect the bending strain of a finger, and the electrode patch (50 wt % CNTs with addition of Ag flakes) can stably measure biosignals (e.g., electrocardiogram signals) under both dry and wet conditions owing to the octopus-like structure and HMP.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32125136</pmid><doi>10.1021/acsami.9b23400</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8339-7880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-03, Vol.12 (12), p.14425-14432 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsami_9b23400 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Air Humans Nanotubes, Carbon - chemistry Polymers - chemistry Polyurethanes - chemistry Tensile Strength Water - chemistry Wearable Electronic Devices |
title | Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Air/Water-Permeable%20Hierarchical%20Mesh%20Architectures%20for%20Stretchable%20Underwater%20Electronic%20Skin%20Patches&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Min,%20Hyeongho&rft.date=2020-03-25&rft.volume=12&rft.issue=12&rft.spage=14425&rft.epage=14432&rft.pages=14425-14432&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b23400&rft_dat=%3Cacs_cross%3Eb320791126%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-a7c5be2f8f1d2dc322b9b9d2686e1ef418d6a53d1c403b2edc9b2577d20e902e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32125136&rfr_iscdi=true |