Loading…
Electrospun Copoly(ether imide) Nanofibers Doped with Silver-Loaded Zeolite as Materials for Biomedical Applications
One of the most versatile techniques to fabricate micro-/nanoscaled nonwoven fibrous materials is represented by electrospinning. Due to its easy availability and versatility, increasing efforts worldwide have focused on the preparation of natural and/or synthetic composite membranes that eventually...
Saved in:
Published in: | ACS applied polymer materials 2022-08, Vol.4 (8), p.6080-6091 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most versatile techniques to fabricate micro-/nanoscaled nonwoven fibrous materials is represented by electrospinning. Due to its easy availability and versatility, increasing efforts worldwide have focused on the preparation of natural and/or synthetic composite membranes that eventually mimic the artificial extracellular matrix. Electrospun composite membranes based on copoly(ether imide)s derived from Jeffamine, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag+), have been successfully produced in the present work via a solution electrospinning process. The morphology of the developed electrospun membranes based on pure copoly(ether imide)s (co-PEI-0) and doped copoly(ether imide)s (co-PEI-0/zeolite or co-PEI-0/silver-containing zeolite L nanoparticles) was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the nanoparticles within the electrospun fibers has been introspected by means of energy dispersive X-ray spectroscopy (EDX). Young’s modulus was reduced from 0.677 MPa for pure co-PEI electrospun fibers to 0.221 MPa when silver-loaded zeolite L nanoparticles were attached to the electrospun composite membranes. Antimicrobial activity of the products demonstrated that the samples containing silver-exchanged zeolite L nanoparticles present an inhibitory effect against both Gram-negative (Escherichia coli ATCC 25922) and Gram-positive (Staphylococcus aureus ATCC 25923) bacteria. Furthermore, a biocompatibility check by studying the cell viability and cell morphology of the developed composite membranes revealed no cytotoxic activity. |
---|---|
ISSN: | 2637-6105 2637-6105 |
DOI: | 10.1021/acsapm.2c00892 |