Loading…

Screening Platform for Identification of Suitable Monomer Mixtures Able To Form Thin-Film Coatings on Polyurethanes by UV-Initiated Free Radical Polymerization

Screening platforms have become a valuable tool for exploring large libraries of surface chemistries helping the discovery of new materials for especially biological applications. Methods applied in these platforms, however, are mainly based on inert bulk synthesis at picoliter scale, resulting in n...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied polymer materials 2019-12, Vol.1 (12), p.3295-3303
Main Authors: Andersen, Christian, Madsen, Niels Jørgen, Daugaard, Anders E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Screening platforms have become a valuable tool for exploring large libraries of surface chemistries helping the discovery of new materials for especially biological applications. Methods applied in these platforms, however, are mainly based on inert bulk synthesis at picoliter scale, resulting in noncovalently attached molecules on stiff glass substrates. This is a poor representation of a potential final product from an industrial perspective. To overcome this, we have developed a screening platform capable of conducting UV-initiated free radical polymerization (FRP) directly onto a flexible polyurethane under ambient conditions. The platform allows for the study of solvent and monomer effects under industrially relevant conditions and was used to graft a series of homo- and copolymer systems (2,2,2-trifluoroethyl methacrylate (TrFEMA), N-isopropyl­acrylamide (NIPAAm), diethylene glycol methyl ether methacrylate-co-poly­(ethylene glycol) methyl ether methacrylate, (MDEGMA-co-MPEGMA), and acrylic acid (AA)), which was confirmed by both water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) analysis. The versatility of the system was further demonstrated through investigation of terpolymer systems and direct evaluation of their antifouling properties using a fluorescein-labeled bovine serum albumin (BSA).
ISSN:2637-6105
2637-6105
DOI:10.1021/acsapm.9b00744