Loading…

Inhalable Dual-Targeted Hybrid Lipid Nanocore–Protein Shell Composites for Combined Delivery of Genistein and All-Trans Retinoic Acid to Lung Cancer Cells

Localized pulmonary delivery of anticancer agents to lungs has proven to be pioneering approach for lung cancer therapy. Hybrid lipid nanocore-protein shell nanoparticles (HLPNPs) coloaded with all-trans retinoic acid (ATRA) and genistein (GNS) were prepared via sequential solvent evaporation follow...

Full description

Saved in:
Bibliographic Details
Published in:ACS biomaterials science & engineering 2020-01, Vol.6 (1), p.71-87
Main Authors: Kamel, Nayra M, Helmy, Maged W, Abdelfattah, Elsayeda-Zeinab, Khattab, Sherine N, Ragab, Doaa, Samaha, Magda W, Fang, Jia-You, Elzoghby, Ahmed O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Localized pulmonary delivery of anticancer agents to lungs has proven to be pioneering approach for lung cancer therapy. Hybrid lipid nanocore-protein shell nanoparticles (HLPNPs) coloaded with all-trans retinoic acid (ATRA) and genistein (GNS) were prepared via sequential solvent evaporation followed by nanoprecipitation of zein shell onto the lipid core. The outer protein shell of HLPNPs provided additional drug reservoir for encapsulation of ATRA/stearyl amine ion pair and enabled dual tumor-targeting with biotin and ATRA. Enhanced uptake and cytotoxic activity of HLPNPs against A549 lung cancer cells was confirmed. To improve their deep lung deposition, dual-targeted drug-loaded HLPNP nanocomposites were fabricated. The nanocomposites prepared using mannitol/HPβCD/leucine demonstrated favorable aerosolization (MMAD = 2.47 μm and FPF = 70.81%). In vivo, the inhalable nanocomposites were superior to aerosolized or i.v. nanoparticle suspension against lung carcinoma bearing mice. Overall, inhalable dual-targeted HLPNPs nanocomposites provided localized codelivery of GNS and ATRA for lung cancer therapy.
ISSN:2373-9878
2373-9878
DOI:10.1021/acsbiomaterials.8b01374