Loading…
Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes
The enzyme family harboring the post-translationally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO) catalytic residue comprises both aromatic amino acid ammonia-lyases (ALs) and 2,3-aminomutases (AMs). The structural origin of the different functions and the role of the inner loop region in...
Saved in:
Published in: | ACS catalysis 2021-04, Vol.11 (8), p.4538-4549 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533 |
---|---|
cites | cdi_FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533 |
container_end_page | 4549 |
container_issue | 8 |
container_start_page | 4538 |
container_title | ACS catalysis |
container_volume | 11 |
creator | Bata, Zsófia Molnár, Zsófia Madaras, Erzsébet Molnár, Bence Sánta-Bell, Evelin Varga, Andrea Leveles, Ibolya Qian, Renzhe Hammerschmidt, Friedrich Paizs, Csaba Vértessy, Beáta G Poppe, László |
description | The enzyme family harboring the post-translationally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO) catalytic residue comprises both aromatic amino acid ammonia-lyases (ALs) and 2,3-aminomutases (AMs). The structural origin of the different functions and the role of the inner loop region in substrate binding are not fully understood. Here, we provide the three-dimensional structures for Petroselinum crispum phenylalanine AL (PcPAL) with fully resolved inner loops in a catalytically competent conformation. Using molecular modeling, we demonstrate that in both ALs and AMs of eukaryotic origin, just a small opening of the inner loop is sufficient for ligand egress. Furthermore, we show that ligand-binding tunnels are analogous to eukaryotic MIO-enzymes and that the critical initial part of these tunnels is present across the whole enzyme family. Engineering of these binding tunnels converts an (R)-AM to a highly selective (S)-β-AL thus establishing a nonclassified enzyme function. |
doi_str_mv | 10.1021/acscatal.1c00266 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_1c00266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c505277473</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EElXpnqUPQIqd2E6yrEoLlYq6aJHYRRPHTlOlTmUnqsyKK3BFTkJQC2LDbGak__-M5iF0S8mYkpDeg3QSWqjHVBISCnGBBiHlPOAs4pd_5ms0cm5H-mJcJDEZoOO6y11roVV40xmjajwzZWWUspUp8aQqVIFzj18_3z8seDy13vV36qa0cNh6DKbA887ItmoM1PjBG9hX0uH1EQ4Ot1v1q-JG4-fFKpiZN79X7gZdaaidGp37EL3MZ5vpU7BcPS6mk2UAURi2AYNUi1jnXKcKipwJGkHMpKCC8ChK8kQIkkaF1GEcxkCYooILllLC45QlvWWIyGmvtI1zVunsYKs9WJ9Rkn2zy37YZWd2feTuFOmVbNd0tv_M_W__AnDddBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Bata, Zsófia ; Molnár, Zsófia ; Madaras, Erzsébet ; Molnár, Bence ; Sánta-Bell, Evelin ; Varga, Andrea ; Leveles, Ibolya ; Qian, Renzhe ; Hammerschmidt, Friedrich ; Paizs, Csaba ; Vértessy, Beáta G ; Poppe, László</creator><creatorcontrib>Bata, Zsófia ; Molnár, Zsófia ; Madaras, Erzsébet ; Molnár, Bence ; Sánta-Bell, Evelin ; Varga, Andrea ; Leveles, Ibolya ; Qian, Renzhe ; Hammerschmidt, Friedrich ; Paizs, Csaba ; Vértessy, Beáta G ; Poppe, László</creatorcontrib><description>The enzyme family harboring the post-translationally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO) catalytic residue comprises both aromatic amino acid ammonia-lyases (ALs) and 2,3-aminomutases (AMs). The structural origin of the different functions and the role of the inner loop region in substrate binding are not fully understood. Here, we provide the three-dimensional structures for Petroselinum crispum phenylalanine AL (PcPAL) with fully resolved inner loops in a catalytically competent conformation. Using molecular modeling, we demonstrate that in both ALs and AMs of eukaryotic origin, just a small opening of the inner loop is sufficient for ligand egress. Furthermore, we show that ligand-binding tunnels are analogous to eukaryotic MIO-enzymes and that the critical initial part of these tunnels is present across the whole enzyme family. Engineering of these binding tunnels converts an (R)-AM to a highly selective (S)-β-AL thus establishing a nonclassified enzyme function.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.1c00266</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2021-04, Vol.11 (8), p.4538-4549</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533</citedby><cites>FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533</cites><orcidid>0000-0002-8358-1378 ; 0000-0003-2193-1405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bata, Zsófia</creatorcontrib><creatorcontrib>Molnár, Zsófia</creatorcontrib><creatorcontrib>Madaras, Erzsébet</creatorcontrib><creatorcontrib>Molnár, Bence</creatorcontrib><creatorcontrib>Sánta-Bell, Evelin</creatorcontrib><creatorcontrib>Varga, Andrea</creatorcontrib><creatorcontrib>Leveles, Ibolya</creatorcontrib><creatorcontrib>Qian, Renzhe</creatorcontrib><creatorcontrib>Hammerschmidt, Friedrich</creatorcontrib><creatorcontrib>Paizs, Csaba</creatorcontrib><creatorcontrib>Vértessy, Beáta G</creatorcontrib><creatorcontrib>Poppe, László</creatorcontrib><title>Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The enzyme family harboring the post-translationally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO) catalytic residue comprises both aromatic amino acid ammonia-lyases (ALs) and 2,3-aminomutases (AMs). The structural origin of the different functions and the role of the inner loop region in substrate binding are not fully understood. Here, we provide the three-dimensional structures for Petroselinum crispum phenylalanine AL (PcPAL) with fully resolved inner loops in a catalytically competent conformation. Using molecular modeling, we demonstrate that in both ALs and AMs of eukaryotic origin, just a small opening of the inner loop is sufficient for ligand egress. Furthermore, we show that ligand-binding tunnels are analogous to eukaryotic MIO-enzymes and that the critical initial part of these tunnels is present across the whole enzyme family. Engineering of these binding tunnels converts an (R)-AM to a highly selective (S)-β-AL thus establishing a nonclassified enzyme function.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EElXpnqUPQIqd2E6yrEoLlYq6aJHYRRPHTlOlTmUnqsyKK3BFTkJQC2LDbGak__-M5iF0S8mYkpDeg3QSWqjHVBISCnGBBiHlPOAs4pd_5ms0cm5H-mJcJDEZoOO6y11roVV40xmjajwzZWWUspUp8aQqVIFzj18_3z8seDy13vV36qa0cNh6DKbA887ItmoM1PjBG9hX0uH1EQ4Ot1v1q-JG4-fFKpiZN79X7gZdaaidGp37EL3MZ5vpU7BcPS6mk2UAURi2AYNUi1jnXKcKipwJGkHMpKCC8ChK8kQIkkaF1GEcxkCYooILllLC45QlvWWIyGmvtI1zVunsYKs9WJ9Rkn2zy37YZWd2feTuFOmVbNd0tv_M_W__AnDddBw</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Bata, Zsófia</creator><creator>Molnár, Zsófia</creator><creator>Madaras, Erzsébet</creator><creator>Molnár, Bence</creator><creator>Sánta-Bell, Evelin</creator><creator>Varga, Andrea</creator><creator>Leveles, Ibolya</creator><creator>Qian, Renzhe</creator><creator>Hammerschmidt, Friedrich</creator><creator>Paizs, Csaba</creator><creator>Vértessy, Beáta G</creator><creator>Poppe, László</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8358-1378</orcidid><orcidid>https://orcid.org/0000-0003-2193-1405</orcidid></search><sort><creationdate>20210416</creationdate><title>Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes</title><author>Bata, Zsófia ; Molnár, Zsófia ; Madaras, Erzsébet ; Molnár, Bence ; Sánta-Bell, Evelin ; Varga, Andrea ; Leveles, Ibolya ; Qian, Renzhe ; Hammerschmidt, Friedrich ; Paizs, Csaba ; Vértessy, Beáta G ; Poppe, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bata, Zsófia</creatorcontrib><creatorcontrib>Molnár, Zsófia</creatorcontrib><creatorcontrib>Madaras, Erzsébet</creatorcontrib><creatorcontrib>Molnár, Bence</creatorcontrib><creatorcontrib>Sánta-Bell, Evelin</creatorcontrib><creatorcontrib>Varga, Andrea</creatorcontrib><creatorcontrib>Leveles, Ibolya</creatorcontrib><creatorcontrib>Qian, Renzhe</creatorcontrib><creatorcontrib>Hammerschmidt, Friedrich</creatorcontrib><creatorcontrib>Paizs, Csaba</creatorcontrib><creatorcontrib>Vértessy, Beáta G</creatorcontrib><creatorcontrib>Poppe, László</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bata, Zsófia</au><au>Molnár, Zsófia</au><au>Madaras, Erzsébet</au><au>Molnár, Bence</au><au>Sánta-Bell, Evelin</au><au>Varga, Andrea</au><au>Leveles, Ibolya</au><au>Qian, Renzhe</au><au>Hammerschmidt, Friedrich</au><au>Paizs, Csaba</au><au>Vértessy, Beáta G</au><au>Poppe, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>11</volume><issue>8</issue><spage>4538</spage><epage>4549</epage><pages>4538-4549</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The enzyme family harboring the post-translationally formed 5-methylene-3,5-dihydro-4H-imidazol-4-one (MIO) catalytic residue comprises both aromatic amino acid ammonia-lyases (ALs) and 2,3-aminomutases (AMs). The structural origin of the different functions and the role of the inner loop region in substrate binding are not fully understood. Here, we provide the three-dimensional structures for Petroselinum crispum phenylalanine AL (PcPAL) with fully resolved inner loops in a catalytically competent conformation. Using molecular modeling, we demonstrate that in both ALs and AMs of eukaryotic origin, just a small opening of the inner loop is sufficient for ligand egress. Furthermore, we show that ligand-binding tunnels are analogous to eukaryotic MIO-enzymes and that the critical initial part of these tunnels is present across the whole enzyme family. Engineering of these binding tunnels converts an (R)-AM to a highly selective (S)-β-AL thus establishing a nonclassified enzyme function.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.1c00266</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8358-1378</orcidid><orcidid>https://orcid.org/0000-0003-2193-1405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2021-04, Vol.11 (8), p.4538-4549 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acscatal_1c00266 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Substrate Tunnel Engineering Aided by X‑ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20Tunnel%20Engineering%20Aided%20by%20X%E2%80%91ray%20Crystallography%20and%20Functional%20Dynamics%20Swaps%20the%20Function%20of%20MIO-Enzymes&rft.jtitle=ACS%20catalysis&rft.au=Bata,%20Zso%CC%81fia&rft.date=2021-04-16&rft.volume=11&rft.issue=8&rft.spage=4538&rft.epage=4549&rft.pages=4538-4549&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.1c00266&rft_dat=%3Cacs_cross%3Ec505277473%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a322t-4a9f67fb5f9eadb4613a74c61605338b866093dcf2727a04e1656491057948533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |