Loading…

Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge

In plasma-coupled catalytic oxidation of nitrogen fixation (NF), the gas–liquid phase combination and synergy with surface catalysis improve NF conversion and reduce energy consumption. However, there is a lack of studies on the synergistic reaction mechanisms of plasma and surface catalysis. Theref...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2024-04, Vol.14 (7), p.4719-4727
Main Authors: Wang, Qingchuan, Liu, Limin, Gao, Guoxin, Chen, Yuzhi, Ouyang, Yuxin, Zhang, Dongyang, Su, Yaqiong, Ding, Shujiang
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a233t-23a96f996513be864781630d433c0246a03cc55a81ff45d09d993b9ec9b8cab13
container_end_page 4727
container_issue 7
container_start_page 4719
container_title ACS catalysis
container_volume 14
creator Wang, Qingchuan
Liu, Limin
Gao, Guoxin
Chen, Yuzhi
Ouyang, Yuxin
Zhang, Dongyang
Su, Yaqiong
Ding, Shujiang
description In plasma-coupled catalytic oxidation of nitrogen fixation (NF), the gas–liquid phase combination and synergy with surface catalysis improve NF conversion and reduce energy consumption. However, there is a lack of studies on the synergistic reaction mechanisms of plasma and surface catalysis. Therefore, this study designed a liquid-phase bubble pin-plate discharge device providing a ground electrode as a catalytic electrode for the study of catalytic coupled mechanisms and optimized the setup parameters. The NF performance of several metal materials was investigated as catalytic electrodes. Among them, Fe foils show the best performance, with a conversion of 1.08%, and Ni foils display the most limited performance. To further study the coupled mechanism, density functional theory calculations combined with the plasma diagnostic technique were used to reveal the corresponding reaction paths and decisive steps by calculating the energies of dissociation and adsorption of nitrogen-based reactive species on the surface of Fe and Ni foils and the energies of stepwise oxidation of N• radicals. The results show that the Eley–Rideal mechanism is the optimal mechanism for NF to NO and NO2, and the Fe foils are more favorable for the formation of adsorbed state N. These findings offer significant guidance for design of the reactor and catalysts for plasma-coupled catalytic NF.
doi_str_mv 10.1021/acscatal.3c05317
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_3c05317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c93334173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a233t-23a96f996513be864781630d433c0246a03cc55a81ff45d09d993b9ec9b8cab13</originalsourceid><addsrcrecordid>eNp1UF1PwjAUbYwmEuTdx_4Ai-26jvVRUJQEhUR9Xu66lpWMTduNgP55S8DEF-_LPbn3nPtxELpmdMhoxG5BeQUtVEOuqOBsdIZ6EROCiJiL8z_4Eg28X9MQsUjSEe2h71nt7apsPW5q3JYaP2tVQm39BjcGv3bOgNJkchi-_9IFXuxsAa3davxiW9esdI2ndhcqQT4GHxgBzO1nZwuyLEMBj7s8rzRe2posK2g1vrc-rHArfYUuDFReD065j96nD2-TJzJfPM4md3MCEectiTjIxEiZCMZznSbxKGUJp0XMw7dRnADlSgkBKTMmFgWVhZQ8l1rJPFWQM95H9DhXucZ7p0324ewG3D5jNDv4l_36l538C5KboyR0snXTuToc-D_9Bwa2dM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wang, Qingchuan ; Liu, Limin ; Gao, Guoxin ; Chen, Yuzhi ; Ouyang, Yuxin ; Zhang, Dongyang ; Su, Yaqiong ; Ding, Shujiang</creator><creatorcontrib>Wang, Qingchuan ; Liu, Limin ; Gao, Guoxin ; Chen, Yuzhi ; Ouyang, Yuxin ; Zhang, Dongyang ; Su, Yaqiong ; Ding, Shujiang</creatorcontrib><description>In plasma-coupled catalytic oxidation of nitrogen fixation (NF), the gas–liquid phase combination and synergy with surface catalysis improve NF conversion and reduce energy consumption. However, there is a lack of studies on the synergistic reaction mechanisms of plasma and surface catalysis. Therefore, this study designed a liquid-phase bubble pin-plate discharge device providing a ground electrode as a catalytic electrode for the study of catalytic coupled mechanisms and optimized the setup parameters. The NF performance of several metal materials was investigated as catalytic electrodes. Among them, Fe foils show the best performance, with a conversion of 1.08%, and Ni foils display the most limited performance. To further study the coupled mechanism, density functional theory calculations combined with the plasma diagnostic technique were used to reveal the corresponding reaction paths and decisive steps by calculating the energies of dissociation and adsorption of nitrogen-based reactive species on the surface of Fe and Ni foils and the energies of stepwise oxidation of N• radicals. The results show that the Eley–Rideal mechanism is the optimal mechanism for NF to NO and NO2, and the Fe foils are more favorable for the formation of adsorbed state N. These findings offer significant guidance for design of the reactor and catalysts for plasma-coupled catalytic NF.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c05317</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-04, Vol.14 (7), p.4719-4727</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a233t-23a96f996513be864781630d433c0246a03cc55a81ff45d09d993b9ec9b8cab13</cites><orcidid>0000-0002-5683-0973 ; 0000-0002-1202-7281 ; 0000-0001-5581-5352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Qingchuan</creatorcontrib><creatorcontrib>Liu, Limin</creatorcontrib><creatorcontrib>Gao, Guoxin</creatorcontrib><creatorcontrib>Chen, Yuzhi</creatorcontrib><creatorcontrib>Ouyang, Yuxin</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Ding, Shujiang</creatorcontrib><title>Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>In plasma-coupled catalytic oxidation of nitrogen fixation (NF), the gas–liquid phase combination and synergy with surface catalysis improve NF conversion and reduce energy consumption. However, there is a lack of studies on the synergistic reaction mechanisms of plasma and surface catalysis. Therefore, this study designed a liquid-phase bubble pin-plate discharge device providing a ground electrode as a catalytic electrode for the study of catalytic coupled mechanisms and optimized the setup parameters. The NF performance of several metal materials was investigated as catalytic electrodes. Among them, Fe foils show the best performance, with a conversion of 1.08%, and Ni foils display the most limited performance. To further study the coupled mechanism, density functional theory calculations combined with the plasma diagnostic technique were used to reveal the corresponding reaction paths and decisive steps by calculating the energies of dissociation and adsorption of nitrogen-based reactive species on the surface of Fe and Ni foils and the energies of stepwise oxidation of N• radicals. The results show that the Eley–Rideal mechanism is the optimal mechanism for NF to NO and NO2, and the Fe foils are more favorable for the formation of adsorbed state N. These findings offer significant guidance for design of the reactor and catalysts for plasma-coupled catalytic NF.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UF1PwjAUbYwmEuTdx_4Ai-26jvVRUJQEhUR9Xu66lpWMTduNgP55S8DEF-_LPbn3nPtxELpmdMhoxG5BeQUtVEOuqOBsdIZ6EROCiJiL8z_4Eg28X9MQsUjSEe2h71nt7apsPW5q3JYaP2tVQm39BjcGv3bOgNJkchi-_9IFXuxsAa3davxiW9esdI2ndhcqQT4GHxgBzO1nZwuyLEMBj7s8rzRe2posK2g1vrc-rHArfYUuDFReD065j96nD2-TJzJfPM4md3MCEectiTjIxEiZCMZznSbxKGUJp0XMw7dRnADlSgkBKTMmFgWVhZQ8l1rJPFWQM95H9DhXucZ7p0324ewG3D5jNDv4l_36l538C5KboyR0snXTuToc-D_9Bwa2dM8</recordid><startdate>20240405</startdate><enddate>20240405</enddate><creator>Wang, Qingchuan</creator><creator>Liu, Limin</creator><creator>Gao, Guoxin</creator><creator>Chen, Yuzhi</creator><creator>Ouyang, Yuxin</creator><creator>Zhang, Dongyang</creator><creator>Su, Yaqiong</creator><creator>Ding, Shujiang</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5683-0973</orcidid><orcidid>https://orcid.org/0000-0002-1202-7281</orcidid><orcidid>https://orcid.org/0000-0001-5581-5352</orcidid></search><sort><creationdate>20240405</creationdate><title>Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge</title><author>Wang, Qingchuan ; Liu, Limin ; Gao, Guoxin ; Chen, Yuzhi ; Ouyang, Yuxin ; Zhang, Dongyang ; Su, Yaqiong ; Ding, Shujiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a233t-23a96f996513be864781630d433c0246a03cc55a81ff45d09d993b9ec9b8cab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qingchuan</creatorcontrib><creatorcontrib>Liu, Limin</creatorcontrib><creatorcontrib>Gao, Guoxin</creatorcontrib><creatorcontrib>Chen, Yuzhi</creatorcontrib><creatorcontrib>Ouyang, Yuxin</creatorcontrib><creatorcontrib>Zhang, Dongyang</creatorcontrib><creatorcontrib>Su, Yaqiong</creatorcontrib><creatorcontrib>Ding, Shujiang</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qingchuan</au><au>Liu, Limin</au><au>Gao, Guoxin</au><au>Chen, Yuzhi</au><au>Ouyang, Yuxin</au><au>Zhang, Dongyang</au><au>Su, Yaqiong</au><au>Ding, Shujiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-04-05</date><risdate>2024</risdate><volume>14</volume><issue>7</issue><spage>4719</spage><epage>4727</epage><pages>4719-4727</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>In plasma-coupled catalytic oxidation of nitrogen fixation (NF), the gas–liquid phase combination and synergy with surface catalysis improve NF conversion and reduce energy consumption. However, there is a lack of studies on the synergistic reaction mechanisms of plasma and surface catalysis. Therefore, this study designed a liquid-phase bubble pin-plate discharge device providing a ground electrode as a catalytic electrode for the study of catalytic coupled mechanisms and optimized the setup parameters. The NF performance of several metal materials was investigated as catalytic electrodes. Among them, Fe foils show the best performance, with a conversion of 1.08%, and Ni foils display the most limited performance. To further study the coupled mechanism, density functional theory calculations combined with the plasma diagnostic technique were used to reveal the corresponding reaction paths and decisive steps by calculating the energies of dissociation and adsorption of nitrogen-based reactive species on the surface of Fe and Ni foils and the energies of stepwise oxidation of N• radicals. The results show that the Eley–Rideal mechanism is the optimal mechanism for NF to NO and NO2, and the Fe foils are more favorable for the formation of adsorbed state N. These findings offer significant guidance for design of the reactor and catalysts for plasma-coupled catalytic NF.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c05317</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5683-0973</orcidid><orcidid>https://orcid.org/0000-0002-1202-7281</orcidid><orcidid>https://orcid.org/0000-0001-5581-5352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-04, Vol.14 (7), p.4719-4727
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_3c05317
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Insights on the Mechanism of Surface-Catalyzed Oxidative Nitrogen Fixation Based on Liquid-Phase Bubble Pin-Plate Discharge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20on%20the%20Mechanism%20of%20Surface-Catalyzed%20Oxidative%20Nitrogen%20Fixation%20Based%20on%20Liquid-Phase%20Bubble%20Pin-Plate%20Discharge&rft.jtitle=ACS%20catalysis&rft.au=Wang,%20Qingchuan&rft.date=2024-04-05&rft.volume=14&rft.issue=7&rft.spage=4719&rft.epage=4727&rft.pages=4719-4727&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c05317&rft_dat=%3Cacs_cross%3Ec93334173%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a233t-23a96f996513be864781630d433c0246a03cc55a81ff45d09d993b9ec9b8cab13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true