Loading…

Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation

Emerging antibiotic resistance requires continual improvement in the arsenal of antimicrobial drugs, especially the critical macrolide antibiotics. Formation of the macrolactone scaffold of these polyketide natural products is catalyzed by a modular polyketide synthase (PKS) thioesterase (TE). The T...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2024-08, Vol.14 (16), p.12551-12563
Main Authors: McCullough, Tyler M., Choudhary, Vishakha, Akey, David L., Skiba, Meredith A., Bernard, Steffen M., Kittendorf, Jeffrey D., Schmidt, Jennifer J., Sherman, David H., Smith, Janet L.
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a163t-484233ee364067c38162c0048ca667ceb1e06527d8269dc40f6df535a429b18b3
container_end_page 12563
container_issue 16
container_start_page 12551
container_title ACS catalysis
container_volume 14
creator McCullough, Tyler M.
Choudhary, Vishakha
Akey, David L.
Skiba, Meredith A.
Bernard, Steffen M.
Kittendorf, Jeffrey D.
Schmidt, Jennifer J.
Sherman, David H.
Smith, Janet L.
description Emerging antibiotic resistance requires continual improvement in the arsenal of antimicrobial drugs, especially the critical macrolide antibiotics. Formation of the macrolactone scaffold of these polyketide natural products is catalyzed by a modular polyketide synthase (PKS) thioesterase (TE). The TE accepts a linear polyketide substrate from the terminal PKS acyl carrier protein to generate an acyl-enzyme adduct that is resolved by attack of a substrate hydroxyl group to form the macrolactone. Our limited mechanistic understanding of TE selectivity for a substrate nucleophile and/or water has hampered development of TEs as biocatalysts that accommodate a variety of natural and non-natural substrates. To understand how TEs direct the substrate nucleophile for macrolactone formation, acyl-enzyme intermediates were trapped as stable amides by substituting the natural serine OH with an amino group. Incorporation of the unnatural amino acid, 1,3-diaminopropionic acid (DAP), was tested with five PKS TEs. DAP-modified TEs (TEDAP) from the pikromycin and erythromycin pathways were purified and tested with six full-length polyketide intermediates from three pathways. The erythromycin TE had permissive substrate selectivity, whereas the pikromycin TE was selective for its native hexaketide and heptaketide substrates. In a crystal structure of a native substrate trapped in pikromycin TEDAP, the linear heptaketide was curled in the active site with the nucleophilic hydroxyl group positioned 4 Å from the amide-enzyme linkage. The curled heptaketide displayed remarkable shape complementarity with the TE acyl cavity. The strikingly different shapes of acyl cavities in TEs of known structure, including those reported here for juvenimicin, tylosin and fluvirucin biosynthesis, provide insights to facilitate TE engineering and optimization.
doi_str_mv 10.1021/acscatal.4c03637
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_4c03637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a564902403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a163t-484233ee364067c38162c0048ca667ceb1e06527d8269dc40f6df535a429b18b3</originalsourceid><addsrcrecordid>eNp1UE1PAjEUbIwmEuTusT_AxX7v4k1R1ASjCXjevO12pbBsSds98O8pARMvvst7k3kzmQxCt5SMKWH0HnTQEKEdC0244vkFGjAqZSYFl5d_7ms0CmFN0gipipwM0GbRVyF6iAYvPex2tvvBtsNfrt1vTLS1wYt9F1cQEr-yzoRo_BE8uy3YLjzgRfS9jr2HFj9BsAE3zuMP0N61oKPrDJ45v4VoXXeDrhpogxmd9xB9z16W07ds_vn6Pn2cZ0AVj5koBOPcGK4EUbnmBVVMp8SFBpWwqaghSrK8Lpia1FqQRtWN5BIEm1S0qPgQkZNvChGCN02583YLfl9SUh77Kn_7Ks99JcndSZKYcu1636WA_78fAESIcDI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>McCullough, Tyler M. ; Choudhary, Vishakha ; Akey, David L. ; Skiba, Meredith A. ; Bernard, Steffen M. ; Kittendorf, Jeffrey D. ; Schmidt, Jennifer J. ; Sherman, David H. ; Smith, Janet L.</creator><creatorcontrib>McCullough, Tyler M. ; Choudhary, Vishakha ; Akey, David L. ; Skiba, Meredith A. ; Bernard, Steffen M. ; Kittendorf, Jeffrey D. ; Schmidt, Jennifer J. ; Sherman, David H. ; Smith, Janet L.</creatorcontrib><description>Emerging antibiotic resistance requires continual improvement in the arsenal of antimicrobial drugs, especially the critical macrolide antibiotics. Formation of the macrolactone scaffold of these polyketide natural products is catalyzed by a modular polyketide synthase (PKS) thioesterase (TE). The TE accepts a linear polyketide substrate from the terminal PKS acyl carrier protein to generate an acyl-enzyme adduct that is resolved by attack of a substrate hydroxyl group to form the macrolactone. Our limited mechanistic understanding of TE selectivity for a substrate nucleophile and/or water has hampered development of TEs as biocatalysts that accommodate a variety of natural and non-natural substrates. To understand how TEs direct the substrate nucleophile for macrolactone formation, acyl-enzyme intermediates were trapped as stable amides by substituting the natural serine OH with an amino group. Incorporation of the unnatural amino acid, 1,3-diaminopropionic acid (DAP), was tested with five PKS TEs. DAP-modified TEs (TEDAP) from the pikromycin and erythromycin pathways were purified and tested with six full-length polyketide intermediates from three pathways. The erythromycin TE had permissive substrate selectivity, whereas the pikromycin TE was selective for its native hexaketide and heptaketide substrates. In a crystal structure of a native substrate trapped in pikromycin TEDAP, the linear heptaketide was curled in the active site with the nucleophilic hydroxyl group positioned 4 Å from the amide-enzyme linkage. The curled heptaketide displayed remarkable shape complementarity with the TE acyl cavity. The strikingly different shapes of acyl cavities in TEs of known structure, including those reported here for juvenimicin, tylosin and fluvirucin biosynthesis, provide insights to facilitate TE engineering and optimization.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.4c03637</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-08, Vol.14 (16), p.12551-12563</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a163t-484233ee364067c38162c0048ca667ceb1e06527d8269dc40f6df535a429b18b3</cites><orcidid>0000-0002-0664-9228 ; 0000-0001-7722-1758 ; 0000-0001-8334-3647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McCullough, Tyler M.</creatorcontrib><creatorcontrib>Choudhary, Vishakha</creatorcontrib><creatorcontrib>Akey, David L.</creatorcontrib><creatorcontrib>Skiba, Meredith A.</creatorcontrib><creatorcontrib>Bernard, Steffen M.</creatorcontrib><creatorcontrib>Kittendorf, Jeffrey D.</creatorcontrib><creatorcontrib>Schmidt, Jennifer J.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><title>Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Emerging antibiotic resistance requires continual improvement in the arsenal of antimicrobial drugs, especially the critical macrolide antibiotics. Formation of the macrolactone scaffold of these polyketide natural products is catalyzed by a modular polyketide synthase (PKS) thioesterase (TE). The TE accepts a linear polyketide substrate from the terminal PKS acyl carrier protein to generate an acyl-enzyme adduct that is resolved by attack of a substrate hydroxyl group to form the macrolactone. Our limited mechanistic understanding of TE selectivity for a substrate nucleophile and/or water has hampered development of TEs as biocatalysts that accommodate a variety of natural and non-natural substrates. To understand how TEs direct the substrate nucleophile for macrolactone formation, acyl-enzyme intermediates were trapped as stable amides by substituting the natural serine OH with an amino group. Incorporation of the unnatural amino acid, 1,3-diaminopropionic acid (DAP), was tested with five PKS TEs. DAP-modified TEs (TEDAP) from the pikromycin and erythromycin pathways were purified and tested with six full-length polyketide intermediates from three pathways. The erythromycin TE had permissive substrate selectivity, whereas the pikromycin TE was selective for its native hexaketide and heptaketide substrates. In a crystal structure of a native substrate trapped in pikromycin TEDAP, the linear heptaketide was curled in the active site with the nucleophilic hydroxyl group positioned 4 Å from the amide-enzyme linkage. The curled heptaketide displayed remarkable shape complementarity with the TE acyl cavity. The strikingly different shapes of acyl cavities in TEs of known structure, including those reported here for juvenimicin, tylosin and fluvirucin biosynthesis, provide insights to facilitate TE engineering and optimization.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1PAjEUbIwmEuTusT_AxX7v4k1R1ASjCXjevO12pbBsSds98O8pARMvvst7k3kzmQxCt5SMKWH0HnTQEKEdC0244vkFGjAqZSYFl5d_7ms0CmFN0gipipwM0GbRVyF6iAYvPex2tvvBtsNfrt1vTLS1wYt9F1cQEr-yzoRo_BE8uy3YLjzgRfS9jr2HFj9BsAE3zuMP0N61oKPrDJ45v4VoXXeDrhpogxmd9xB9z16W07ds_vn6Pn2cZ0AVj5koBOPcGK4EUbnmBVVMp8SFBpWwqaghSrK8Lpia1FqQRtWN5BIEm1S0qPgQkZNvChGCN02583YLfl9SUh77Kn_7Ks99JcndSZKYcu1636WA_78fAESIcDI</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>McCullough, Tyler M.</creator><creator>Choudhary, Vishakha</creator><creator>Akey, David L.</creator><creator>Skiba, Meredith A.</creator><creator>Bernard, Steffen M.</creator><creator>Kittendorf, Jeffrey D.</creator><creator>Schmidt, Jennifer J.</creator><creator>Sherman, David H.</creator><creator>Smith, Janet L.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-7722-1758</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid></search><sort><creationdate>20240816</creationdate><title>Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation</title><author>McCullough, Tyler M. ; Choudhary, Vishakha ; Akey, David L. ; Skiba, Meredith A. ; Bernard, Steffen M. ; Kittendorf, Jeffrey D. ; Schmidt, Jennifer J. ; Sherman, David H. ; Smith, Janet L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a163t-484233ee364067c38162c0048ca667ceb1e06527d8269dc40f6df535a429b18b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCullough, Tyler M.</creatorcontrib><creatorcontrib>Choudhary, Vishakha</creatorcontrib><creatorcontrib>Akey, David L.</creatorcontrib><creatorcontrib>Skiba, Meredith A.</creatorcontrib><creatorcontrib>Bernard, Steffen M.</creatorcontrib><creatorcontrib>Kittendorf, Jeffrey D.</creatorcontrib><creatorcontrib>Schmidt, Jennifer J.</creatorcontrib><creatorcontrib>Sherman, David H.</creatorcontrib><creatorcontrib>Smith, Janet L.</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCullough, Tyler M.</au><au>Choudhary, Vishakha</au><au>Akey, David L.</au><au>Skiba, Meredith A.</au><au>Bernard, Steffen M.</au><au>Kittendorf, Jeffrey D.</au><au>Schmidt, Jennifer J.</au><au>Sherman, David H.</au><au>Smith, Janet L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-08-16</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><spage>12551</spage><epage>12563</epage><pages>12551-12563</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Emerging antibiotic resistance requires continual improvement in the arsenal of antimicrobial drugs, especially the critical macrolide antibiotics. Formation of the macrolactone scaffold of these polyketide natural products is catalyzed by a modular polyketide synthase (PKS) thioesterase (TE). The TE accepts a linear polyketide substrate from the terminal PKS acyl carrier protein to generate an acyl-enzyme adduct that is resolved by attack of a substrate hydroxyl group to form the macrolactone. Our limited mechanistic understanding of TE selectivity for a substrate nucleophile and/or water has hampered development of TEs as biocatalysts that accommodate a variety of natural and non-natural substrates. To understand how TEs direct the substrate nucleophile for macrolactone formation, acyl-enzyme intermediates were trapped as stable amides by substituting the natural serine OH with an amino group. Incorporation of the unnatural amino acid, 1,3-diaminopropionic acid (DAP), was tested with five PKS TEs. DAP-modified TEs (TEDAP) from the pikromycin and erythromycin pathways were purified and tested with six full-length polyketide intermediates from three pathways. The erythromycin TE had permissive substrate selectivity, whereas the pikromycin TE was selective for its native hexaketide and heptaketide substrates. In a crystal structure of a native substrate trapped in pikromycin TEDAP, the linear heptaketide was curled in the active site with the nucleophilic hydroxyl group positioned 4 Å from the amide-enzyme linkage. The curled heptaketide displayed remarkable shape complementarity with the TE acyl cavity. The strikingly different shapes of acyl cavities in TEs of known structure, including those reported here for juvenimicin, tylosin and fluvirucin biosynthesis, provide insights to facilitate TE engineering and optimization.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.4c03637</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0664-9228</orcidid><orcidid>https://orcid.org/0000-0001-7722-1758</orcidid><orcidid>https://orcid.org/0000-0001-8334-3647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-08, Vol.14 (16), p.12551-12563
issn 2155-5435
2155-5435
language eng
recordid cdi_crossref_primary_10_1021_acscatal_4c03637
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Substrate Trapping in Polyketide Synthase Thioesterase Domains: Structural Basis for Macrolactone Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20Trapping%20in%20Polyketide%20Synthase%20Thioesterase%20Domains:%20Structural%20Basis%20for%20Macrolactone%20Formation&rft.jtitle=ACS%20catalysis&rft.au=McCullough,%20Tyler%20M.&rft.date=2024-08-16&rft.volume=14&rft.issue=16&rft.spage=12551&rft.epage=12563&rft.pages=12551-12563&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.4c03637&rft_dat=%3Cacs_cross%3Ea564902403%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a163t-484233ee364067c38162c0048ca667ceb1e06527d8269dc40f6df535a429b18b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true