Loading…

Effects of Defects on Photocatalytic Activity of Hydrogen-Treated Titanium Oxide Nanobelts

Previous studies have shown that hydrogen treatment leads to the formation of blue to black TiO2, which exhibits photocatalytic activity different from that of white pristine TiO2. However, the underlying mechanism remains poorly understood. Herein, density functional theory is combined with compreh...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis 2017-03, Vol.7 (3), p.1742-1748
Main Authors: Cushing, Scott. K, Meng, Fanke, Zhang, Junying, Ding, Bangfu, Chen, Chih Kai, Chen, Chih-Jung, Liu, Ru-Shi, Bristow, Alan D, Bright, Joeseph, Zheng, Peng, Wu, Nianqiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous studies have shown that hydrogen treatment leads to the formation of blue to black TiO2, which exhibits photocatalytic activity different from that of white pristine TiO2. However, the underlying mechanism remains poorly understood. Herein, density functional theory is combined with comprehensive analytical approaches such as X-ray absorption near edge structure spectroscopy and transient absorption spectroscopy to gain fundamental understanding of the correlation among the oxygen vacancy, electronic band structure, charge separation, charge carrier lifetime, reactive oxygen species (ROS) generation, and photocatalytic activity. The present work reveals that hydrogen treatment results in chemical reduction of TiO2, inducing surface and subsurface oxygen vacancies, which create shallow and deep sub-band gap Ti­(III) states below the conduction band. This leads to a blue color but limited enhancement of visible light photocatalytic activity up to 440 nm at the cost of reduced ultraviolet photocatalytic activity. The extended light absorption spectral range for reduced TiO2 is ascribed to both the defect-to-conduction band transitions and the valence band-to-defect transitions. The photogenerated charge carriers from the defect states to the conduction band have lifetimes too short to drive photocatalysis. The Ti­(III) deep and shallow trap states below the conduction band are also found to reduce the lifetime of photogenerated charge carriers under ultraviolet light irradiation. The ROS generated by the reduced TiO2 are less than those generated by pristine TiO2. Consequently, the reduced TiO2 exhibits ultraviolet-responsive photocatalytic activity worse than that of pristine TiO2. This report shows that increasing the light absorption spectral range of a semiconductor by doping or introduction of defects does not necessarily guarantee an increase in photocatalytic activity.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.6b02177