Loading…
Copper-Catalyzed Remote C–H Functionalizations of Naphthylamides through a Coordinating Activation Strategy and Single-Electron-Transfer (SET) Mechanism
Achieving p-CAr–H site selectivity is one of the major challenges in direct carbon–hydrogen (C–H) functionalization reactions. Herein, the copper-catalyzed and picolinamide-assisted remote p-C–H sulfonylation of 1-naphthylamides was realized. The synthetic utility of this method was further examined...
Saved in:
Published in: | ACS catalysis 2017-04, Vol.7 (4), p.2661-2667 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Achieving p-CAr–H site selectivity is one of the major challenges in direct carbon–hydrogen (C–H) functionalization reactions. Herein, the copper-catalyzed and picolinamide-assisted remote p-C–H sulfonylation of 1-naphthylamides was realized. The synthetic utility of this method was further examined by sequential functionalizations and the efficient synthesis of the pharmaceutically useful 5-HT6 serotonin receptor ligand. This approach also provided a general strategy for other p-C–H bond functionalization, such as highly selective constructions of C–O, C–Br, C–I, C–C, and C–N bonds. Control experiments and theoretical calculations suggested that this C–H sulfonylation reaction might proceed through a single-electron-transfer process. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.6b03671 |