Loading…
A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution
Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit order...
Saved in:
Published in: | ACS catalysis 2020-01, Vol.10 (1), p.121-128 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3 |
container_end_page | 128 |
container_issue | 1 |
container_start_page | 121 |
container_title | ACS catalysis |
container_volume | 10 |
creator | Lindgren, Per Kastlunger, Georg Peterson, Andrew A |
description | Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt’s high activity. Surprisingly, we find that the G ∼ 0 hydrogen atoms are inert in the kinetically relevant region and that the active hydrogen atoms have ΔG’s much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverage lead directly to Pt’s strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses and suggests true design criteria for nonprecious alternatives. |
doi_str_mv | 10.1021/acscatal.9b02799 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acscatal_9b02799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b214913592</sourcerecordid><originalsourceid>FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxoMoWGrvHvMAbk2ym83mJKXUtlDwoueQP5P-Yd2UJBX6Bj6UT-OTuKUVvDiXGeab72P4IXRPyZgSRh-1TVZn3Y6lIUxIeYUGjHJe8Krk13_mWzRKaUf6qnjdCDJATxM83ei2hW4NOAecN4Dn-PvzCxO87DLEfYSs8zZ0OHi8OLoY1tDh2UdoD6ftHbrxuk0wuvQhenuevU4XxeplvpxOVoVmNc1FSTUYSaSzAMbohjLGhbDG1tQLWTFmZNlwAYxwwj0F5xpOKReuJL3sXTlE5JxrY0gpglf7uH3X8agoUScG6peBujDoLQ9nS6-oXTjErn_w__MfCVpf0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lindgren, Per ; Kastlunger, Georg ; Peterson, Andrew A</creator><creatorcontrib>Lindgren, Per ; Kastlunger, Georg ; Peterson, Andrew A</creatorcontrib><description>Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt’s high activity. Surprisingly, we find that the G ∼ 0 hydrogen atoms are inert in the kinetically relevant region and that the active hydrogen atoms have ΔG’s much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverage lead directly to Pt’s strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses and suggests true design criteria for nonprecious alternatives.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.9b02799</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2020-01, Vol.10 (1), p.121-128</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3</citedby><cites>FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3</cites><orcidid>0000-0003-2855-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lindgren, Per</creatorcontrib><creatorcontrib>Kastlunger, Georg</creatorcontrib><creatorcontrib>Peterson, Andrew A</creatorcontrib><title>A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt’s high activity. Surprisingly, we find that the G ∼ 0 hydrogen atoms are inert in the kinetically relevant region and that the active hydrogen atoms have ΔG’s much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverage lead directly to Pt’s strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses and suggests true design criteria for nonprecious alternatives.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9KAzEQxoMoWGrvHvMAbk2ym83mJKXUtlDwoueQP5P-Yd2UJBX6Bj6UT-OTuKUVvDiXGeab72P4IXRPyZgSRh-1TVZn3Y6lIUxIeYUGjHJe8Krk13_mWzRKaUf6qnjdCDJATxM83ei2hW4NOAecN4Dn-PvzCxO87DLEfYSs8zZ0OHi8OLoY1tDh2UdoD6ftHbrxuk0wuvQhenuevU4XxeplvpxOVoVmNc1FSTUYSaSzAMbohjLGhbDG1tQLWTFmZNlwAYxwwj0F5xpOKReuJL3sXTlE5JxrY0gpglf7uH3X8agoUScG6peBujDoLQ9nS6-oXTjErn_w__MfCVpf0w</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>Lindgren, Per</creator><creator>Kastlunger, Georg</creator><creator>Peterson, Andrew A</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2855-9482</orcidid></search><sort><creationdate>20200103</creationdate><title>A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution</title><author>Lindgren, Per ; Kastlunger, Georg ; Peterson, Andrew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindgren, Per</creatorcontrib><creatorcontrib>Kastlunger, Georg</creatorcontrib><creatorcontrib>Peterson, Andrew A</creatorcontrib><collection>CrossRef</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindgren, Per</au><au>Kastlunger, Georg</au><au>Peterson, Andrew A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-01-03</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>121</spage><epage>128</epage><pages>121-128</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Platinum is a nearly perfect catalyst for the hydrogen evolution reaction, and its high activity has conventionally been explained by its close-to-thermoneutral hydrogen binding energy (G ∼ 0). However, many candidate nonprecious metal catalysts bind hydrogen with similar strengths but exhibit orders-of-magnitude lower activity for this reaction. In this study, we employ electronic structure methods that allow fully potential-dependent reaction barriers to be calculated, in order to develop a complete working picture of hydrogen evolution on platinum. Through the resulting ab initio microkinetic models, we assess the mechanistic origins of Pt’s high activity. Surprisingly, we find that the G ∼ 0 hydrogen atoms are inert in the kinetically relevant region and that the active hydrogen atoms have ΔG’s much weaker, similar to that of gold. These on-top hydrogens have particularly low barriers, which we compare to those of gold, explaining the high reaction rates, and the exponential variations in coverage lead directly to Pt’s strong kinetic response to the applied potential. This explains the unique reactivity of Pt that is missed by conventional Sabatier analyses and suggests true design criteria for nonprecious alternatives.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.9b02799</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2855-9482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-5435 |
ispartof | ACS catalysis, 2020-01, Vol.10 (1), p.121-128 |
issn | 2155-5435 2155-5435 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acscatal_9b02799 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | A Challenge to the G ∼ 0 Interpretation of Hydrogen Evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Challenge%20to%20the%20G%20%E2%88%BC%200%20Interpretation%20of%20Hydrogen%20Evolution&rft.jtitle=ACS%20catalysis&rft.au=Lindgren,%20Per&rft.date=2020-01-03&rft.volume=10&rft.issue=1&rft.spage=121&rft.epage=128&rft.pages=121-128&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.9b02799&rft_dat=%3Cacs_cross%3Eb214913592%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a261t-31aeb909dceebba8122577cbc61f79422b93857e20505f1edd851157d30794fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |