Loading…

Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers

Rational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially ava...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2024-03, Vol.9 (3), p.1219-1227
Main Authors: Hu, Chuan, Lee, Young Jun, Ma, Yichang, Zhang, Xiaohua, Jung, Seung Won, Hwang, Hyewon, Cho, Hyeon Keun, Kim, Myeong-Geun, Yoo, Sung Jong, Zhang, Qiugen, Lee, Young Moo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663
cites cdi_FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663
container_end_page 1227
container_issue 3
container_start_page 1219
container_title ACS energy letters
container_volume 9
creator Hu, Chuan
Lee, Young Jun
Ma, Yichang
Zhang, Xiaohua
Jung, Seung Won
Hwang, Hyewon
Cho, Hyeon Keun
Kim, Myeong-Geun
Yoo, Sung Jong
Zhang, Qiugen
Lee, Young Moo
description Rational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially available monocrystalline silicon plates with pyramid-shaped patterns on their surface. The prepared membrane shows a 39% improvement in water permeability and a 23% enhancement in the electrochemical surface area compared with a flat membrane with the same catalyst loading. The patterned AEM achieves an unprecedented current density of 17.5 A cm–2@2.0 V and mass activity of 26.3 A mgIrO2 –1 using a catalyst-coated membrane method. Moreover, the patterned AEM-based AEMWE can be operated at 1.5 A cm–2 and 60 °C for 1000 h with a relatively low voltage decay rate of 22 μV h–1. These results demonstrate that patterned membranes have promising application capability for the next generation of hydrogen-production devices.
doi_str_mv 10.1021/acsenergylett.4c00207
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_4c00207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c129405873</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRsNQ-gpAXSJ3ZQw6XocRDqeiFXofNZlZS043srkJ9eiMtolcyF_PDzDcMH2OXCEsEjlfaBHLkX_YDxbiUBoBDfsJmXBSQFliq01_5nC1C2AIAZoWaasbWVfehnaEuedQxkndTuqdd67WjkNjRJ7W1venJxaQaXvXQO_pZSOqBTPTjsP8kHy7YmdVDoMWxz9nzdf20uk03Dzd3q2qTaiF5TDUK1VqT6VwBKgkms6rMOKK1opVQlAhUSEMCC90JqY3IW8W57UoUErJMzJk63DV-DMGTbd58v9N-3yA0306aP06ao5OJwwM3jZvt-O7d9OU_zBcnZWoo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hu, Chuan ; Lee, Young Jun ; Ma, Yichang ; Zhang, Xiaohua ; Jung, Seung Won ; Hwang, Hyewon ; Cho, Hyeon Keun ; Kim, Myeong-Geun ; Yoo, Sung Jong ; Zhang, Qiugen ; Lee, Young Moo</creator><creatorcontrib>Hu, Chuan ; Lee, Young Jun ; Ma, Yichang ; Zhang, Xiaohua ; Jung, Seung Won ; Hwang, Hyewon ; Cho, Hyeon Keun ; Kim, Myeong-Geun ; Yoo, Sung Jong ; Zhang, Qiugen ; Lee, Young Moo</creatorcontrib><description>Rational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially available monocrystalline silicon plates with pyramid-shaped patterns on their surface. The prepared membrane shows a 39% improvement in water permeability and a 23% enhancement in the electrochemical surface area compared with a flat membrane with the same catalyst loading. The patterned AEM achieves an unprecedented current density of 17.5 A cm–2@2.0 V and mass activity of 26.3 A mgIrO2 –1 using a catalyst-coated membrane method. Moreover, the patterned AEM-based AEMWE can be operated at 1.5 A cm–2 and 60 °C for 1000 h with a relatively low voltage decay rate of 22 μV h–1. These results demonstrate that patterned membranes have promising application capability for the next generation of hydrogen-production devices.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c00207</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2024-03, Vol.9 (3), p.1219-1227</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663</citedby><cites>FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663</cites><orcidid>0000-0002-1524-1099 ; 0000-0003-0998-1506 ; 0000-0003-1556-0206 ; 0000-0002-5047-3143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Lee, Young Jun</creatorcontrib><creatorcontrib>Ma, Yichang</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Jung, Seung Won</creatorcontrib><creatorcontrib>Hwang, Hyewon</creatorcontrib><creatorcontrib>Cho, Hyeon Keun</creatorcontrib><creatorcontrib>Kim, Myeong-Geun</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Zhang, Qiugen</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><title>Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Rational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially available monocrystalline silicon plates with pyramid-shaped patterns on their surface. The prepared membrane shows a 39% improvement in water permeability and a 23% enhancement in the electrochemical surface area compared with a flat membrane with the same catalyst loading. The patterned AEM achieves an unprecedented current density of 17.5 A cm–2@2.0 V and mass activity of 26.3 A mgIrO2 –1 using a catalyst-coated membrane method. Moreover, the patterned AEM-based AEMWE can be operated at 1.5 A cm–2 and 60 °C for 1000 h with a relatively low voltage decay rate of 22 μV h–1. These results demonstrate that patterned membranes have promising application capability for the next generation of hydrogen-production devices.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKw0AQhhdRsNQ-gpAXSJ3ZQw6XocRDqeiFXofNZlZS043srkJ9eiMtolcyF_PDzDcMH2OXCEsEjlfaBHLkX_YDxbiUBoBDfsJmXBSQFliq01_5nC1C2AIAZoWaasbWVfehnaEuedQxkndTuqdd67WjkNjRJ7W1venJxaQaXvXQO_pZSOqBTPTjsP8kHy7YmdVDoMWxz9nzdf20uk03Dzd3q2qTaiF5TDUK1VqT6VwBKgkms6rMOKK1opVQlAhUSEMCC90JqY3IW8W57UoUErJMzJk63DV-DMGTbd58v9N-3yA0306aP06ao5OJwwM3jZvt-O7d9OU_zBcnZWoo</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Hu, Chuan</creator><creator>Lee, Young Jun</creator><creator>Ma, Yichang</creator><creator>Zhang, Xiaohua</creator><creator>Jung, Seung Won</creator><creator>Hwang, Hyewon</creator><creator>Cho, Hyeon Keun</creator><creator>Kim, Myeong-Geun</creator><creator>Yoo, Sung Jong</creator><creator>Zhang, Qiugen</creator><creator>Lee, Young Moo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1524-1099</orcidid><orcidid>https://orcid.org/0000-0003-0998-1506</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid><orcidid>https://orcid.org/0000-0002-5047-3143</orcidid></search><sort><creationdate>20240308</creationdate><title>Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers</title><author>Hu, Chuan ; Lee, Young Jun ; Ma, Yichang ; Zhang, Xiaohua ; Jung, Seung Won ; Hwang, Hyewon ; Cho, Hyeon Keun ; Kim, Myeong-Geun ; Yoo, Sung Jong ; Zhang, Qiugen ; Lee, Young Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hu, Chuan</creatorcontrib><creatorcontrib>Lee, Young Jun</creatorcontrib><creatorcontrib>Ma, Yichang</creatorcontrib><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Jung, Seung Won</creatorcontrib><creatorcontrib>Hwang, Hyewon</creatorcontrib><creatorcontrib>Cho, Hyeon Keun</creatorcontrib><creatorcontrib>Kim, Myeong-Geun</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Zhang, Qiugen</creatorcontrib><creatorcontrib>Lee, Young Moo</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Chuan</au><au>Lee, Young Jun</au><au>Ma, Yichang</au><au>Zhang, Xiaohua</au><au>Jung, Seung Won</au><au>Hwang, Hyewon</au><au>Cho, Hyeon Keun</au><au>Kim, Myeong-Geun</au><au>Yoo, Sung Jong</au><au>Zhang, Qiugen</au><au>Lee, Young Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>1219</spage><epage>1227</epage><pages>1219-1227</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Rational design of membrane electrode assemblies is crucial to the production of high-performance and durable anion exchange membrane (AEM) water electrolyzers (AEMWEs). Here, we propose a facile method to prepare patterned membranes by casting a polymer solution onto the surface of commercially available monocrystalline silicon plates with pyramid-shaped patterns on their surface. The prepared membrane shows a 39% improvement in water permeability and a 23% enhancement in the electrochemical surface area compared with a flat membrane with the same catalyst loading. The patterned AEM achieves an unprecedented current density of 17.5 A cm–2@2.0 V and mass activity of 26.3 A mgIrO2 –1 using a catalyst-coated membrane method. Moreover, the patterned AEM-based AEMWE can be operated at 1.5 A cm–2 and 60 °C for 1000 h with a relatively low voltage decay rate of 22 μV h–1. These results demonstrate that patterned membranes have promising application capability for the next generation of hydrogen-production devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c00207</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1524-1099</orcidid><orcidid>https://orcid.org/0000-0003-0998-1506</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid><orcidid>https://orcid.org/0000-0002-5047-3143</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2024-03, Vol.9 (3), p.1219-1227
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_4c00207
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Advanced Patterned Membranes for Efficient Alkaline Membrane Electrolyzers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Patterned%20Membranes%20for%20Efficient%20Alkaline%20Membrane%20Electrolyzers&rft.jtitle=ACS%20energy%20letters&rft.au=Hu,%20Chuan&rft.date=2024-03-08&rft.volume=9&rft.issue=3&rft.spage=1219&rft.epage=1227&rft.pages=1219-1227&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c00207&rft_dat=%3Cacs_cross%3Ec129405873%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-a135bfc6a7501540c6f596211ff3b408910e84ce318ad34ac37b522fd91340663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true