Loading…

Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance

Metal–organic cathode compounds with low solubility and more viable eco-efficient production still suffer from relatively low voltage and limited discharge capacity because their redox reactions solely rely on active organic functional groups or metal clusters. Here, a metal–organic compound Cu2(p-O...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters 2020-02, Vol.5 (2), p.477-485
Main Authors: Zhao, Xiaolin, Cui, Mengnan, Ma, Chao, Qiu, Wujie, Wang, Youwei, Song, Erhong, Wang, Kaixue, Liu, Jianjun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873
cites cdi_FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873
container_end_page 485
container_issue 2
container_start_page 477
container_title ACS energy letters
container_volume 5
creator Zhao, Xiaolin
Cui, Mengnan
Ma, Chao
Qiu, Wujie
Wang, Youwei
Song, Erhong
Wang, Kaixue
Liu, Jianjun
description Metal–organic cathode compounds with low solubility and more viable eco-efficient production still suffer from relatively low voltage and limited discharge capacity because their redox reactions solely rely on active organic functional groups or metal clusters. Here, a metal–organic compound Cu2(p-O2NC6H4CO2)4(EtO)2 was demonstrated to have high capacity of 243 mA h g–1 and high-voltage plateaus of 3.66, 3.15, 2.25, and 2.08 V vs Li+/Li through first-principles calculations. Electronic structure analysis reveals Cu2+ ↔ Cu x+ (1 < x < 2) and O y– (1 < y < 2) ↔ O2– in a metal–ligand moiety and N5+ ↔ N x+ (4 < x < 5) and O2– ↔ O z– (1 < z < 2) in −NO2 groups, achieving high voltage and capacity by operating cooperative cationic–anionic redox reactions based on multiple active sites and hierarchical chemical bonds. Furthermore, the Cu2(p-O2NC6H4CO2)4(EtO)2 is also predicted to have good electrochemical reversibility because the cationic conversion reaction is inhibited by a higher-voltage anionic reaction and hierarchical chemical bonds of [MO5] n−. The present study provides a strategy to design metal–organic cathode compounds with high performance.
doi_str_mv 10.1021/acsenergylett.9b02630
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsenergylett_9b02630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c534478775</sourcerecordid><originalsourceid>FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWGofQcgLTE0ynZ8s61BtoaWCuh7SzE2bMpMMSVrozrVb39Ancfqz0JXcxT3wnXO5HITuKRlSwuiDkB4MuPWhhhCGfEVYGpMr1GNxTqKc8uT6l75FA--3hBCa5kk3PfRZWNuCE0HvAU-UAhmwVXixq4Nua8BjeSKvOoDHwlR4qju3kxstRY2LDTQn8WhN5bE2eAFB1N8fX0u3FkZLXNimtbsjVNbhWdM6u9dmjQsRNrYC_AKuA40wEu7QjRK1h8Fl99H70-StmEbz5fOsGM8jwVgSoizjeTZaQa4UXaWSspQKJRI54qSSIHnMWFXlwLms4s4rY2AqSSUIySlneRb3UXK-K5313oEqW6cb4Q4lJeWx0_JPp-Wl0y5Hz7kOl1u7c6b78p_MDw8qg8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Xiaolin ; Cui, Mengnan ; Ma, Chao ; Qiu, Wujie ; Wang, Youwei ; Song, Erhong ; Wang, Kaixue ; Liu, Jianjun</creator><creatorcontrib>Zhao, Xiaolin ; Cui, Mengnan ; Ma, Chao ; Qiu, Wujie ; Wang, Youwei ; Song, Erhong ; Wang, Kaixue ; Liu, Jianjun</creatorcontrib><description><![CDATA[Metal–organic cathode compounds with low solubility and more viable eco-efficient production still suffer from relatively low voltage and limited discharge capacity because their redox reactions solely rely on active organic functional groups or metal clusters. Here, a metal–organic compound Cu2(p-O2NC6H4CO2)4(EtO)2 was demonstrated to have high capacity of 243 mA h g–1 and high-voltage plateaus of 3.66, 3.15, 2.25, and 2.08 V vs Li+/Li through first-principles calculations. Electronic structure analysis reveals Cu2+ ↔ Cu x+ (1 < x < 2) and O y– (1 < y < 2) ↔ O2– in a metal–ligand moiety and N5+ ↔ N x+ (4 < x < 5) and O2– ↔ O z– (1 < z < 2) in −NO2 groups, achieving high voltage and capacity by operating cooperative cationic–anionic redox reactions based on multiple active sites and hierarchical chemical bonds. Furthermore, the Cu2(p-O2NC6H4CO2)4(EtO)2 is also predicted to have good electrochemical reversibility because the cationic conversion reaction is inhibited by a higher-voltage anionic reaction and hierarchical chemical bonds of [MO5] n−. The present study provides a strategy to design metal–organic cathode compounds with high performance.]]></description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.9b02630</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2020-02, Vol.5 (2), p.477-485</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873</citedby><cites>FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873</cites><orcidid>0000-0001-6309-5172 ; 0000-0003-2452-6966 ; 0000-0002-2076-5487 ; 0000-0001-7332-9171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Zhao, Xiaolin</creatorcontrib><creatorcontrib>Cui, Mengnan</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Qiu, Wujie</creatorcontrib><creatorcontrib>Wang, Youwei</creatorcontrib><creatorcontrib>Song, Erhong</creatorcontrib><creatorcontrib>Wang, Kaixue</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><title>Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description><![CDATA[Metal–organic cathode compounds with low solubility and more viable eco-efficient production still suffer from relatively low voltage and limited discharge capacity because their redox reactions solely rely on active organic functional groups or metal clusters. Here, a metal–organic compound Cu2(p-O2NC6H4CO2)4(EtO)2 was demonstrated to have high capacity of 243 mA h g–1 and high-voltage plateaus of 3.66, 3.15, 2.25, and 2.08 V vs Li+/Li through first-principles calculations. Electronic structure analysis reveals Cu2+ ↔ Cu x+ (1 < x < 2) and O y– (1 < y < 2) ↔ O2– in a metal–ligand moiety and N5+ ↔ N x+ (4 < x < 5) and O2– ↔ O z– (1 < z < 2) in −NO2 groups, achieving high voltage and capacity by operating cooperative cationic–anionic redox reactions based on multiple active sites and hierarchical chemical bonds. Furthermore, the Cu2(p-O2NC6H4CO2)4(EtO)2 is also predicted to have good electrochemical reversibility because the cationic conversion reaction is inhibited by a higher-voltage anionic reaction and hierarchical chemical bonds of [MO5] n−. The present study provides a strategy to design metal–organic cathode compounds with high performance.]]></description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWGofQcgLTE0ynZ8s61BtoaWCuh7SzE2bMpMMSVrozrVb39Ancfqz0JXcxT3wnXO5HITuKRlSwuiDkB4MuPWhhhCGfEVYGpMr1GNxTqKc8uT6l75FA--3hBCa5kk3PfRZWNuCE0HvAU-UAhmwVXixq4Nua8BjeSKvOoDHwlR4qju3kxstRY2LDTQn8WhN5bE2eAFB1N8fX0u3FkZLXNimtbsjVNbhWdM6u9dmjQsRNrYC_AKuA40wEu7QjRK1h8Fl99H70-StmEbz5fOsGM8jwVgSoizjeTZaQa4UXaWSspQKJRI54qSSIHnMWFXlwLms4s4rY2AqSSUIySlneRb3UXK-K5313oEqW6cb4Q4lJeWx0_JPp-Wl0y5Hz7kOl1u7c6b78p_MDw8qg8M</recordid><startdate>20200214</startdate><enddate>20200214</enddate><creator>Zhao, Xiaolin</creator><creator>Cui, Mengnan</creator><creator>Ma, Chao</creator><creator>Qiu, Wujie</creator><creator>Wang, Youwei</creator><creator>Song, Erhong</creator><creator>Wang, Kaixue</creator><creator>Liu, Jianjun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6309-5172</orcidid><orcidid>https://orcid.org/0000-0003-2452-6966</orcidid><orcidid>https://orcid.org/0000-0002-2076-5487</orcidid><orcidid>https://orcid.org/0000-0001-7332-9171</orcidid></search><sort><creationdate>20200214</creationdate><title>Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance</title><author>Zhao, Xiaolin ; Cui, Mengnan ; Ma, Chao ; Qiu, Wujie ; Wang, Youwei ; Song, Erhong ; Wang, Kaixue ; Liu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiaolin</creatorcontrib><creatorcontrib>Cui, Mengnan</creatorcontrib><creatorcontrib>Ma, Chao</creatorcontrib><creatorcontrib>Qiu, Wujie</creatorcontrib><creatorcontrib>Wang, Youwei</creatorcontrib><creatorcontrib>Song, Erhong</creatorcontrib><creatorcontrib>Wang, Kaixue</creatorcontrib><creatorcontrib>Liu, Jianjun</creatorcontrib><collection>CrossRef</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiaolin</au><au>Cui, Mengnan</au><au>Ma, Chao</au><au>Qiu, Wujie</au><au>Wang, Youwei</au><au>Song, Erhong</au><au>Wang, Kaixue</au><au>Liu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2020-02-14</date><risdate>2020</risdate><volume>5</volume><issue>2</issue><spage>477</spage><epage>485</epage><pages>477-485</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract><![CDATA[Metal–organic cathode compounds with low solubility and more viable eco-efficient production still suffer from relatively low voltage and limited discharge capacity because their redox reactions solely rely on active organic functional groups or metal clusters. Here, a metal–organic compound Cu2(p-O2NC6H4CO2)4(EtO)2 was demonstrated to have high capacity of 243 mA h g–1 and high-voltage plateaus of 3.66, 3.15, 2.25, and 2.08 V vs Li+/Li through first-principles calculations. Electronic structure analysis reveals Cu2+ ↔ Cu x+ (1 < x < 2) and O y– (1 < y < 2) ↔ O2– in a metal–ligand moiety and N5+ ↔ N x+ (4 < x < 5) and O2– ↔ O z– (1 < z < 2) in −NO2 groups, achieving high voltage and capacity by operating cooperative cationic–anionic redox reactions based on multiple active sites and hierarchical chemical bonds. Furthermore, the Cu2(p-O2NC6H4CO2)4(EtO)2 is also predicted to have good electrochemical reversibility because the cationic conversion reaction is inhibited by a higher-voltage anionic reaction and hierarchical chemical bonds of [MO5] n−. The present study provides a strategy to design metal–organic cathode compounds with high performance.]]></abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.9b02630</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6309-5172</orcidid><orcidid>https://orcid.org/0000-0003-2452-6966</orcidid><orcidid>https://orcid.org/0000-0002-2076-5487</orcidid><orcidid>https://orcid.org/0000-0001-7332-9171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2020-02, Vol.5 (2), p.477-485
issn 2380-8195
2380-8195
language eng
recordid cdi_crossref_primary_10_1021_acsenergylett_9b02630
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Cooperative Effect of Multiple Active Sites and Hierarchical Chemical Bonds in Metal–Organic Compounds for Improving Cathode Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20Effect%20of%20Multiple%20Active%20Sites%20and%20Hierarchical%20Chemical%20Bonds%20in%20Metal%E2%80%93Organic%20Compounds%20for%20Improving%20Cathode%20Performance&rft.jtitle=ACS%20energy%20letters&rft.au=Zhao,%20Xiaolin&rft.date=2020-02-14&rft.volume=5&rft.issue=2&rft.spage=477&rft.epage=485&rft.pages=477-485&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.9b02630&rft_dat=%3Cacs_cross%3Ec534478775%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a225t-779874be8ff1b6c1261afa5c490dcec9322dd8e99cd3779c3e2f56ceac9192873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true