Loading…

Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications

With the rapid development of next-generation artificial intelligence technology, research on advanced machine vision has received extensive attention. It is well-known that significant progress has been made in artificial vision systems based on light sensors, but the separate light sensor and memo...

Full description

Saved in:
Bibliographic Details
Published in:ACS materials letters 2023-02, Vol.5 (2), p.504-526
Main Authors: Yang, Chuan, Sun, Bai, Zhou, Guangdong, Guo, Tao, Ke, Chuan, Chen, Yuanzheng, Shao, Jinyou, Zhao, Yong, Wang, Hongyan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643
cites cdi_FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643
container_end_page 526
container_issue 2
container_start_page 504
container_title ACS materials letters
container_volume 5
creator Yang, Chuan
Sun, Bai
Zhou, Guangdong
Guo, Tao
Ke, Chuan
Chen, Yuanzheng
Shao, Jinyou
Zhao, Yong
Wang, Hongyan
description With the rapid development of next-generation artificial intelligence technology, research on advanced machine vision has received extensive attention. It is well-known that significant progress has been made in artificial vision systems based on light sensors, but the separate light sensor and memory require additional time for information transfer to realize computation due to the limitation of the von Neumann architecture, which delays the computational speed and hinders large-scale integration. In recent years, the emergence of photoelectric memristors has brought new inspiration to the study of machine vision, which is expected to overcome the above problems. Photoelectric memristors can not only respond directly to light stimuli but also perform temporary memory and real-time processing of visual information and sensory data, providing a promising hardware foundation for the development of artificial vision systems. In this review, the background and related theory of photoelectric memristors and machine vision are first introduced. Then, the research progress of photoelectric memristors and machine vision based on them is reviewed. Finally, the existing problems impeding the progress of machine vision based on photoelectric memristors are summarized, and the future development is predicted.
doi_str_mv 10.1021/acsmaterialslett.2c00911
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsmaterialslett_2c00911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c061698838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRS0EElHIP_gHNvgV77pcIh6REkFBaC3HOyaOdteRbQr-HqOkiGioZop7Zq4OQpiSOSWM3hubBpMhetOnHnKeM0uIovQKTZjkqhKqVtcX-y2apXQgpLCSKiEmaPu2DzlADzZHb_EGhuhTDrF6MAk6vDF270fAHz75MGIXIm5j9s7b8hKvxgx97z9htIDb47H31uSSS3foxpVKMDvPKdo-Pb4vX6r16_Nq2a4rw4nIlSKOdkY2lAln6K6R1EFp5gS34JTo3MIRXneyYbXsHAO2UJw1TDJBid1JwaeoOd21MaQUwelj9IOJ35oS_WtI_zWkz4YKKk5oSehD-IpjSfyP_QCuX3KX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Chuan ; Sun, Bai ; Zhou, Guangdong ; Guo, Tao ; Ke, Chuan ; Chen, Yuanzheng ; Shao, Jinyou ; Zhao, Yong ; Wang, Hongyan</creator><creatorcontrib>Yang, Chuan ; Sun, Bai ; Zhou, Guangdong ; Guo, Tao ; Ke, Chuan ; Chen, Yuanzheng ; Shao, Jinyou ; Zhao, Yong ; Wang, Hongyan</creatorcontrib><description>With the rapid development of next-generation artificial intelligence technology, research on advanced machine vision has received extensive attention. It is well-known that significant progress has been made in artificial vision systems based on light sensors, but the separate light sensor and memory require additional time for information transfer to realize computation due to the limitation of the von Neumann architecture, which delays the computational speed and hinders large-scale integration. In recent years, the emergence of photoelectric memristors has brought new inspiration to the study of machine vision, which is expected to overcome the above problems. Photoelectric memristors can not only respond directly to light stimuli but also perform temporary memory and real-time processing of visual information and sensory data, providing a promising hardware foundation for the development of artificial vision systems. In this review, the background and related theory of photoelectric memristors and machine vision are first introduced. Then, the research progress of photoelectric memristors and machine vision based on them is reviewed. Finally, the existing problems impeding the progress of machine vision based on photoelectric memristors are summarized, and the future development is predicted.</description><identifier>ISSN: 2639-4979</identifier><identifier>EISSN: 2639-4979</identifier><identifier>DOI: 10.1021/acsmaterialslett.2c00911</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS materials letters, 2023-02, Vol.5 (2), p.504-526</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643</citedby><cites>FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643</cites><orcidid>0000-0002-5840-509X ; 0000-0002-5824-9488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Sun, Bai</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Ke, Chuan</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Wang, Hongyan</creatorcontrib><title>Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications</title><title>ACS materials letters</title><addtitle>ACS Materials Lett</addtitle><description>With the rapid development of next-generation artificial intelligence technology, research on advanced machine vision has received extensive attention. It is well-known that significant progress has been made in artificial vision systems based on light sensors, but the separate light sensor and memory require additional time for information transfer to realize computation due to the limitation of the von Neumann architecture, which delays the computational speed and hinders large-scale integration. In recent years, the emergence of photoelectric memristors has brought new inspiration to the study of machine vision, which is expected to overcome the above problems. Photoelectric memristors can not only respond directly to light stimuli but also perform temporary memory and real-time processing of visual information and sensory data, providing a promising hardware foundation for the development of artificial vision systems. In this review, the background and related theory of photoelectric memristors and machine vision are first introduced. Then, the research progress of photoelectric memristors and machine vision based on them is reviewed. Finally, the existing problems impeding the progress of machine vision based on photoelectric memristors are summarized, and the future development is predicted.</description><issn>2639-4979</issn><issn>2639-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRS0EElHIP_gHNvgV77pcIh6REkFBaC3HOyaOdteRbQr-HqOkiGioZop7Zq4OQpiSOSWM3hubBpMhetOnHnKeM0uIovQKTZjkqhKqVtcX-y2apXQgpLCSKiEmaPu2DzlADzZHb_EGhuhTDrF6MAk6vDF270fAHz75MGIXIm5j9s7b8hKvxgx97z9htIDb47H31uSSS3foxpVKMDvPKdo-Pb4vX6r16_Nq2a4rw4nIlSKOdkY2lAln6K6R1EFp5gS34JTo3MIRXneyYbXsHAO2UJw1TDJBid1JwaeoOd21MaQUwelj9IOJ35oS_WtI_zWkz4YKKk5oSehD-IpjSfyP_QCuX3KX</recordid><startdate>20230206</startdate><enddate>20230206</enddate><creator>Yang, Chuan</creator><creator>Sun, Bai</creator><creator>Zhou, Guangdong</creator><creator>Guo, Tao</creator><creator>Ke, Chuan</creator><creator>Chen, Yuanzheng</creator><creator>Shao, Jinyou</creator><creator>Zhao, Yong</creator><creator>Wang, Hongyan</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5840-509X</orcidid><orcidid>https://orcid.org/0000-0002-5824-9488</orcidid></search><sort><creationdate>20230206</creationdate><title>Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications</title><author>Yang, Chuan ; Sun, Bai ; Zhou, Guangdong ; Guo, Tao ; Ke, Chuan ; Chen, Yuanzheng ; Shao, Jinyou ; Zhao, Yong ; Wang, Hongyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chuan</creatorcontrib><creatorcontrib>Sun, Bai</creatorcontrib><creatorcontrib>Zhou, Guangdong</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Ke, Chuan</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><creatorcontrib>Wang, Hongyan</creatorcontrib><collection>CrossRef</collection><jtitle>ACS materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chuan</au><au>Sun, Bai</au><au>Zhou, Guangdong</au><au>Guo, Tao</au><au>Ke, Chuan</au><au>Chen, Yuanzheng</au><au>Shao, Jinyou</au><au>Zhao, Yong</au><au>Wang, Hongyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications</atitle><jtitle>ACS materials letters</jtitle><addtitle>ACS Materials Lett</addtitle><date>2023-02-06</date><risdate>2023</risdate><volume>5</volume><issue>2</issue><spage>504</spage><epage>526</epage><pages>504-526</pages><issn>2639-4979</issn><eissn>2639-4979</eissn><abstract>With the rapid development of next-generation artificial intelligence technology, research on advanced machine vision has received extensive attention. It is well-known that significant progress has been made in artificial vision systems based on light sensors, but the separate light sensor and memory require additional time for information transfer to realize computation due to the limitation of the von Neumann architecture, which delays the computational speed and hinders large-scale integration. In recent years, the emergence of photoelectric memristors has brought new inspiration to the study of machine vision, which is expected to overcome the above problems. Photoelectric memristors can not only respond directly to light stimuli but also perform temporary memory and real-time processing of visual information and sensory data, providing a promising hardware foundation for the development of artificial vision systems. In this review, the background and related theory of photoelectric memristors and machine vision are first introduced. Then, the research progress of photoelectric memristors and machine vision based on them is reviewed. Finally, the existing problems impeding the progress of machine vision based on photoelectric memristors are summarized, and the future development is predicted.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsmaterialslett.2c00911</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5840-509X</orcidid><orcidid>https://orcid.org/0000-0002-5824-9488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2639-4979
ispartof ACS materials letters, 2023-02, Vol.5 (2), p.504-526
issn 2639-4979
2639-4979
language eng
recordid cdi_crossref_primary_10_1021_acsmaterialslett_2c00911
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Photoelectric Memristor-Based Machine Vision for Artificial Intelligence Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T10%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectric%20Memristor-Based%20Machine%20Vision%20for%20Artificial%20Intelligence%20Applications&rft.jtitle=ACS%20materials%20letters&rft.au=Yang,%20Chuan&rft.date=2023-02-06&rft.volume=5&rft.issue=2&rft.spage=504&rft.epage=526&rft.pages=504-526&rft.issn=2639-4979&rft.eissn=2639-4979&rft_id=info:doi/10.1021/acsmaterialslett.2c00911&rft_dat=%3Cacs_cross%3Ec061698838%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a304t-90f1da68124fa1b861fe216f43cef94df5f037d68276df2e259328262410cb643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true