Loading…
Low-Dose 4D-STEM Tomography for Beam-Sensitive Nanocomposites
Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal–organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electro...
Saved in:
Published in: | ACS materials letters 2024-01, Vol.6 (1), p.165-173 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron tomography is essential for investigating the three-dimensional (3D) structure of nanomaterials. However, many of these materials, such as metal–organic frameworks (MOFs), are extremely sensitive to electron radiation, making it difficult to acquire a series of projection images for electron tomography without inducing electron-beam damage. Another significant challenge is the high contrast in high-angle annular dark field scanning transmission electron microscopy that can be expected for nanocomposites composed of a metal nanoparticle and an MOF. This strong contrast leads to so-called metal artifacts in the 3D reconstruction. To overcome these limitations, we here present low-dose electron tomography based on four-dimensional scanning transmission electron microscopy (4D-STEM) data sets, collected using an ultrafast and highly sensitive direct electron detector. As a proof of concept, we demonstrate the applicability of the method for an Au nanostar embedded in a ZIF-8 MOF, which is of great interest for applications in various fields, including drug delivery. |
---|---|
ISSN: | 2639-4979 2639-4979 |
DOI: | 10.1021/acsmaterialslett.3c01042 |