Loading…

A Light-Triggered pH-Responsive Metal–Organic Framework for Smart Delivery of Fungicide to Control Sclerotinia Diseases of Oilseed Rape

Using a simple one-pot method, we developed a prochloraz (Pro) and pH-jump reagent-loaded zeolitic imidazolate framework-8 (PD@ZIF-8) composite for the smart control of Sclerotinia disease. The pH-jump reagent can induce the acidic degradation of ZIF-8 using UV light to realize the controlled releas...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2021-04, Vol.15 (4), p.6987-6997
Main Authors: Liang, Wenlong, Xie, Zhengang, Cheng, Jingli, Xiao, Douxin, Xiong, Qiuyu, Wang, Qiangwei, Zhao, Jinhao, Gui, Wenjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using a simple one-pot method, we developed a prochloraz (Pro) and pH-jump reagent-loaded zeolitic imidazolate framework-8 (PD@ZIF-8) composite for the smart control of Sclerotinia disease. The pH-jump reagent can induce the acidic degradation of ZIF-8 using UV light to realize the controlled release of Pro. Thus, the physical properties of PD@ZIF-8, such as its release, formulation stability, and adhesion, were investigated in detail. The results showed that the quantity of Pro released by PD@ZIF-8 under UV light irradiation (365 nm) was 63.4 ± 3.5%, whereas under dark conditions, it was only 13.7 ± 0.8%. In vitro activity indicated that the EC50 of PD@ZIF-8 under UV light irradiation was 0.122 ± 0.02 μg/mL, which was not significantly different from that of Pro (0.107 ± 0.01 μg/mL). Pot experiments showed that the efficacy of PD@ZIF-8 under light irradiation was 51.2 ± 5.7% for a fungal infection at 14 days post-spraying, whereas the effectiveness of prochloraz emulsion in water was only 9.3 ± 3.3%. Furthermore, fluorescence tracking of ZIF-8 and biosafety experiments showed that ZIF-8 could be absorbed by plant leaves and transported to various parts of oilseed rape in a short period of time and that PD@ZIF-8 was relatively safe for plants and HepG2 cells. These results highlight the potential of the composite to provide efficient and smart delivery of fungicides into plants for protection against diseases and provide an idea for developing sustainable agriculture.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c10877