Loading…

A Double-Functional Additive Containing Nucleophilic Groups for High-Performance Zn-Ion Batteries

Aqueous zinc-ion batteries (AZIBs) have attracted attention for their low cost and environmental friendliness. Unfortunately, commercialization has been hampered by several problems with dendrite growth and side reactions. Herein, we select sodium tartrate (TA-Na) as a dual-functional electrolyte ad...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2023-01, Vol.17 (2), p.1610-1621
Main Authors: Wan, Jiandong, Wang, Rui, Liu, Zixiang, Zhang, Longhai, Liang, Fei, Zhou, Tengfei, Zhang, Shilin, Zhang, Lin, Lu, Qiquan, Zhang, Chaofeng, Guo, Zaiping
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aqueous zinc-ion batteries (AZIBs) have attracted attention for their low cost and environmental friendliness. Unfortunately, commercialization has been hampered by several problems with dendrite growth and side reactions. Herein, we select sodium tartrate (TA-Na) as a dual-functional electrolyte additive to enhance the reversibility of AZIBs. The tartrate anions are preferentially adsorbed on the Zn surface, and then the highly nucleophilic carboxylate will coordinate with Zn2+ to promote the desolvation of [Zn­(H2O)6]2+, leading to uniform Zn deposition on the beneficial (002) plane and inhibiting side reactions and dendrite growth. Consequently, the Zn|Zn cells show a long-term cycling stability of over 1500 cycles at 0.5 mA cm–2. Moreover, the Ta-Na additive improves the performance of Zn||MnO2 full cells, evidenced by a cycling life of 1000 cycles at 1 A g–1 under practical conditions with a limited Zn anode (negative/positive capacity ratio of 10/1) and controlled electrolyte (electrolyte/capacity ratio of 20 μL mAh–1).
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.2c11357