Loading…

Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery

To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profi...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2020-01, Vol.14 (1), p.488-497
Main Authors: Volpatti, Lisa R, Matranga, Morgan A, Cortinas, Abel B, Delcassian, Derfogail, Daniel, Kevin B, Langer, Robert, Anderson, Daniel G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3
cites cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3
container_end_page 497
container_issue 1
container_start_page 488
container_title ACS nano
container_volume 14
creator Volpatti, Lisa R
Matranga, Morgan A
Cortinas, Abel B
Delcassian, Derfogail
Daniel, Kevin B
Langer, Robert
Anderson, Daniel G
description To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.
doi_str_mv 10.1021/acsnano.9b06395
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_9b06395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a588166985</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUnukjab_UqOUmstFIWq6C3MJrOSkm7CbiP237vS2punmYH3eWEeQq5pMqZJSidQegu2Hec6kSwXJ2RIcybjJJMfp8dd0AG58H6dJEJlSp6TAaNKCiGyIXmfN33ZeoxX6LvW-voLo6fQ2IHb1mWDPjKti1bQ1VUEtopm31u0FVbRCzYmQJ99A9twLqzvm9pG99iECre7JGcGGo9Xhzkibw-z1-ljvHyeL6Z3yxiY4tvYaC0qjooCliwVgmWAqLnWKYCUhmelxooLrmhOFfAMs9SUXOa5SpkEZdiITPa9pWu9d2iKztUbcLuCJsWvouKgqDgoCsTNnuh6vcHqmP9zEgK3-0Agi3XbOxse-LfuB8H3c-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</creator><creatorcontrib>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</creatorcontrib><description>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b06395</identifier><identifier>PMID: 31765558</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line ; Dextrans - chemical synthesis ; Dextrans - chemistry ; Dextrans - metabolism ; Drug Delivery Systems ; Glucose - chemistry ; Glucose - metabolism ; Humans ; Insulin - blood ; Insulin - chemistry ; Insulin - metabolism ; Mice ; Nanoparticles - chemistry ; Particle Size ; Surface Properties</subject><ispartof>ACS nano, 2020-01, Vol.14 (1), p.488-497</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</citedby><cites>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</cites><orcidid>0000-0003-4255-0492 ; 0000-0003-0151-4903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31765558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volpatti, Lisa R</creatorcontrib><creatorcontrib>Matranga, Morgan A</creatorcontrib><creatorcontrib>Cortinas, Abel B</creatorcontrib><creatorcontrib>Delcassian, Derfogail</creatorcontrib><creatorcontrib>Daniel, Kevin B</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Dextrans - chemical synthesis</subject><subject>Dextrans - chemistry</subject><subject>Dextrans - metabolism</subject><subject>Drug Delivery Systems</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Insulin - blood</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK2evUnukjab_UqOUmstFIWq6C3MJrOSkm7CbiP237vS2punmYH3eWEeQq5pMqZJSidQegu2Hec6kSwXJ2RIcybjJJMfp8dd0AG58H6dJEJlSp6TAaNKCiGyIXmfN33ZeoxX6LvW-voLo6fQ2IHb1mWDPjKti1bQ1VUEtopm31u0FVbRCzYmQJ99A9twLqzvm9pG99iECre7JGcGGo9Xhzkibw-z1-ljvHyeL6Z3yxiY4tvYaC0qjooCliwVgmWAqLnWKYCUhmelxooLrmhOFfAMs9SUXOa5SpkEZdiITPa9pWu9d2iKztUbcLuCJsWvouKgqDgoCsTNnuh6vcHqmP9zEgK3-0Agi3XbOxse-LfuB8H3c-4</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Volpatti, Lisa R</creator><creator>Matranga, Morgan A</creator><creator>Cortinas, Abel B</creator><creator>Delcassian, Derfogail</creator><creator>Daniel, Kevin B</creator><creator>Langer, Robert</creator><creator>Anderson, Daniel G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0003-0151-4903</orcidid></search><sort><creationdate>20200128</creationdate><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><author>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Dextrans - chemical synthesis</topic><topic>Dextrans - chemistry</topic><topic>Dextrans - metabolism</topic><topic>Drug Delivery Systems</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Insulin - blood</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volpatti, Lisa R</creatorcontrib><creatorcontrib>Matranga, Morgan A</creatorcontrib><creatorcontrib>Cortinas, Abel B</creatorcontrib><creatorcontrib>Delcassian, Derfogail</creatorcontrib><creatorcontrib>Daniel, Kevin B</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volpatti, Lisa R</au><au>Matranga, Morgan A</au><au>Cortinas, Abel B</au><au>Delcassian, Derfogail</au><au>Daniel, Kevin B</au><au>Langer, Robert</au><au>Anderson, Daniel G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>488</spage><epage>497</epage><pages>488-497</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31765558</pmid><doi>10.1021/acsnano.9b06395</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0003-0151-4903</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2020-01, Vol.14 (1), p.488-497
issn 1936-0851
1936-086X
language eng
recordid cdi_crossref_primary_10_1021_acsnano_9b06395
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Cell Line
Dextrans - chemical synthesis
Dextrans - chemistry
Dextrans - metabolism
Drug Delivery Systems
Glucose - chemistry
Glucose - metabolism
Humans
Insulin - blood
Insulin - chemistry
Insulin - metabolism
Mice
Nanoparticles - chemistry
Particle Size
Surface Properties
title Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-Responsive%20Nanoparticles%20for%20Rapid%20and%20Extended%20Self-Regulated%20Insulin%20Delivery&rft.jtitle=ACS%20nano&rft.au=Volpatti,%20Lisa%20R&rft.date=2020-01-28&rft.volume=14&rft.issue=1&rft.spage=488&rft.epage=497&rft.pages=488-497&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b06395&rft_dat=%3Cacs_cross%3Ea588166985%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31765558&rfr_iscdi=true