Loading…
Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery
To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profi...
Saved in:
Published in: | ACS nano 2020-01, Vol.14 (1), p.488-497 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3 |
container_end_page | 497 |
container_issue | 1 |
container_start_page | 488 |
container_title | ACS nano |
container_volume | 14 |
creator | Volpatti, Lisa R Matranga, Morgan A Cortinas, Abel B Delcassian, Derfogail Daniel, Kevin B Langer, Robert Anderson, Daniel G |
description | To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems. |
doi_str_mv | 10.1021/acsnano.9b06395 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_9b06395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a588166985</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUnukjab_UqOUmstFIWq6C3MJrOSkm7CbiP237vS2punmYH3eWEeQq5pMqZJSidQegu2Hec6kSwXJ2RIcybjJJMfp8dd0AG58H6dJEJlSp6TAaNKCiGyIXmfN33ZeoxX6LvW-voLo6fQ2IHb1mWDPjKti1bQ1VUEtopm31u0FVbRCzYmQJ99A9twLqzvm9pG99iECre7JGcGGo9Xhzkibw-z1-ljvHyeL6Z3yxiY4tvYaC0qjooCliwVgmWAqLnWKYCUhmelxooLrmhOFfAMs9SUXOa5SpkEZdiITPa9pWu9d2iKztUbcLuCJsWvouKgqDgoCsTNnuh6vcHqmP9zEgK3-0Agi3XbOxse-LfuB8H3c-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</creator><creatorcontrib>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</creatorcontrib><description>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b06395</identifier><identifier>PMID: 31765558</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cell Line ; Dextrans - chemical synthesis ; Dextrans - chemistry ; Dextrans - metabolism ; Drug Delivery Systems ; Glucose - chemistry ; Glucose - metabolism ; Humans ; Insulin - blood ; Insulin - chemistry ; Insulin - metabolism ; Mice ; Nanoparticles - chemistry ; Particle Size ; Surface Properties</subject><ispartof>ACS nano, 2020-01, Vol.14 (1), p.488-497</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</citedby><cites>FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</cites><orcidid>0000-0003-4255-0492 ; 0000-0003-0151-4903</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31765558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Volpatti, Lisa R</creatorcontrib><creatorcontrib>Matranga, Morgan A</creatorcontrib><creatorcontrib>Cortinas, Abel B</creatorcontrib><creatorcontrib>Delcassian, Derfogail</creatorcontrib><creatorcontrib>Daniel, Kevin B</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Dextrans - chemical synthesis</subject><subject>Dextrans - chemistry</subject><subject>Dextrans - metabolism</subject><subject>Drug Delivery Systems</subject><subject>Glucose - chemistry</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Insulin - blood</subject><subject>Insulin - chemistry</subject><subject>Insulin - metabolism</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRbK2evUnukjab_UqOUmstFIWq6C3MJrOSkm7CbiP237vS2punmYH3eWEeQq5pMqZJSidQegu2Hec6kSwXJ2RIcybjJJMfp8dd0AG58H6dJEJlSp6TAaNKCiGyIXmfN33ZeoxX6LvW-voLo6fQ2IHb1mWDPjKti1bQ1VUEtopm31u0FVbRCzYmQJ99A9twLqzvm9pG99iECre7JGcGGo9Xhzkibw-z1-ljvHyeL6Z3yxiY4tvYaC0qjooCliwVgmWAqLnWKYCUhmelxooLrmhOFfAMs9SUXOa5SpkEZdiITPa9pWu9d2iKztUbcLuCJsWvouKgqDgoCsTNnuh6vcHqmP9zEgK3-0Agi3XbOxse-LfuB8H3c-4</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Volpatti, Lisa R</creator><creator>Matranga, Morgan A</creator><creator>Cortinas, Abel B</creator><creator>Delcassian, Derfogail</creator><creator>Daniel, Kevin B</creator><creator>Langer, Robert</creator><creator>Anderson, Daniel G</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0003-0151-4903</orcidid></search><sort><creationdate>20200128</creationdate><title>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</title><author>Volpatti, Lisa R ; Matranga, Morgan A ; Cortinas, Abel B ; Delcassian, Derfogail ; Daniel, Kevin B ; Langer, Robert ; Anderson, Daniel G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Dextrans - chemical synthesis</topic><topic>Dextrans - chemistry</topic><topic>Dextrans - metabolism</topic><topic>Drug Delivery Systems</topic><topic>Glucose - chemistry</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Insulin - blood</topic><topic>Insulin - chemistry</topic><topic>Insulin - metabolism</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volpatti, Lisa R</creatorcontrib><creatorcontrib>Matranga, Morgan A</creatorcontrib><creatorcontrib>Cortinas, Abel B</creatorcontrib><creatorcontrib>Delcassian, Derfogail</creatorcontrib><creatorcontrib>Daniel, Kevin B</creatorcontrib><creatorcontrib>Langer, Robert</creatorcontrib><creatorcontrib>Anderson, Daniel G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volpatti, Lisa R</au><au>Matranga, Morgan A</au><au>Cortinas, Abel B</au><au>Delcassian, Derfogail</au><au>Daniel, Kevin B</au><au>Langer, Robert</au><au>Anderson, Daniel G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>488</spage><epage>497</epage><pages>488-497</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>To mimic native insulin activity, materials have been developed that encapsulate insulin, glucose oxidase, and catalase for glucose-responsive insulin delivery. A major challenge, however, has been achieving the desired kinetics of both rapid and extended release. Here, we tune insulin release profiles from polymeric nanoparticles by altering the degree of modification of acid-degradable, acetalated-dextran polymers. Nanoparticles synthesized from dextran with a high acyclic acetal content (94% of residues) show rapid release kinetics, while nanoparticles from dextran with a high cyclic acetal content (71% of residues) release insulin more slowly. Thus, coformulation of these two materials affords both rapid and extended glucose-responsive insulin delivery. In vivo analyses using both streptozotocin-induced type 1 diabetic and healthy mouse models indicate that this delivery system has the ability to respond to glucose on a therapeutically relevant time scale. Importantly, the concentration of human insulin in mouse serum is enhanced more than 3-fold with elevated glucose levels, providing direct evidence of glucose-responsiveness in animals. We further show that a single subcutaneous injection provides 16 h of glycemic control in diabetic mice. We believe the nanoparticle formulations developed here may provide a generalized strategy for the development of glucose-responsive insulin delivery systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31765558</pmid><doi>10.1021/acsnano.9b06395</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4255-0492</orcidid><orcidid>https://orcid.org/0000-0003-0151-4903</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-01, Vol.14 (1), p.488-497 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsnano_9b06395 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Animals Cell Line Dextrans - chemical synthesis Dextrans - chemistry Dextrans - metabolism Drug Delivery Systems Glucose - chemistry Glucose - metabolism Humans Insulin - blood Insulin - chemistry Insulin - metabolism Mice Nanoparticles - chemistry Particle Size Surface Properties |
title | Glucose-Responsive Nanoparticles for Rapid and Extended Self-Regulated Insulin Delivery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucose-Responsive%20Nanoparticles%20for%20Rapid%20and%20Extended%20Self-Regulated%20Insulin%20Delivery&rft.jtitle=ACS%20nano&rft.au=Volpatti,%20Lisa%20R&rft.date=2020-01-28&rft.volume=14&rft.issue=1&rft.spage=488&rft.epage=497&rft.pages=488-497&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b06395&rft_dat=%3Cacs_cross%3Ea588166985%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-fbb5d4e71aec325538aeeb4bb2aa66f48cbed45471917a48e82fc46997236a7f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31765558&rfr_iscdi=true |