Loading…
3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors
3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored...
Saved in:
Published in: | ACS nano 2020-01, Vol.14 (1), p.867-876 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83 |
container_end_page | 876 |
container_issue | 1 |
container_start_page | 867 |
container_title | ACS nano |
container_volume | 14 |
creator | Fan, Zhaodi Wei, Chaohui Yu, Lianghao Xia, Zhou Cai, Jingsheng Tian, Zhengnan Zou, Guifu Dou, Shi Xue Sun, Jingyu |
description | 3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored thus far. Herein, we demonstrate a 3D-printed sodium-ion hybrid capacitor (SIC) based on nitrogen-doped MXene (
-Ti
C
T
) anode and activated carbon cathode. N-Ti
C
T
affording a well-defined porous structure and uniform nitrogen doping can be obtained via a sacrificial template method. Thus-formulated ink can be directly printed to form electrode architecture without the request of a conventional current collector. The 3D-printed SICs, with a large areal mass loading up to 15.2 mg cm
, can harvest an areal energy/power density of 1.18 mWh cm
/40.15 mW cm
, outperforming the state-of-the-art 3D-printed energy storage devices. Furthermore, our SIC also achieves a gravimetric energy/power density of 101.6 Wh kg
/3269 W kg
. This work demonstrates that the 3D printing technology is versatile enough to construct emerging energy storage systems reconciling high energy and power density. |
doi_str_mv | 10.1021/acsnano.9b08030 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsnano_9b08030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31898892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83</originalsourceid><addsrcrecordid>eNo9kE1PwjAcxhujEUTP3ky_wODfdVvboxkqJKgkYsJt6fqCNaxdWjjw7cWAnp4neV4OP4TuCYwJ5GQiVfLSh7FogQOFCzQkglYZ8Gp9-e9LMkA3KX0DlIyz6hoNKOGCc5EPUaBTvIzO75zf4GDxMsSwT_jN7WLYGJ9NQ280XjlMcY1z_Lo23uAPJa0NW52wDRHP3OYrW5p49J306hgH7fZdNg8ezw5tdBrXspfK7UJMt-jKym0yd2cdoc_np1U9yxbvL_P6cZEpAiLPyqIoqrayTEtVKmKsgAqYKsuSEMKgYJoTVlFglOdAbaFabpQwgmpeaLCcjtDk9KtiSCka2_TRdTIeGgLNL7rmjK45ozsuHk6Lft92Rv_3_1jRH-5MakY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Fan, Zhaodi ; Wei, Chaohui ; Yu, Lianghao ; Xia, Zhou ; Cai, Jingsheng ; Tian, Zhengnan ; Zou, Guifu ; Dou, Shi Xue ; Sun, Jingyu</creator><creatorcontrib>Fan, Zhaodi ; Wei, Chaohui ; Yu, Lianghao ; Xia, Zhou ; Cai, Jingsheng ; Tian, Zhengnan ; Zou, Guifu ; Dou, Shi Xue ; Sun, Jingyu</creatorcontrib><description>3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored thus far. Herein, we demonstrate a 3D-printed sodium-ion hybrid capacitor (SIC) based on nitrogen-doped MXene (
-Ti
C
T
) anode and activated carbon cathode. N-Ti
C
T
affording a well-defined porous structure and uniform nitrogen doping can be obtained via a sacrificial template method. Thus-formulated ink can be directly printed to form electrode architecture without the request of a conventional current collector. The 3D-printed SICs, with a large areal mass loading up to 15.2 mg cm
, can harvest an areal energy/power density of 1.18 mWh cm
/40.15 mW cm
, outperforming the state-of-the-art 3D-printed energy storage devices. Furthermore, our SIC also achieves a gravimetric energy/power density of 101.6 Wh kg
/3269 W kg
. This work demonstrates that the 3D printing technology is versatile enough to construct emerging energy storage systems reconciling high energy and power density.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.9b08030</identifier><identifier>PMID: 31898892</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS nano, 2020-01, Vol.14 (1), p.867-876</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83</citedby><cites>FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83</cites><orcidid>0000-0002-8342-7768 ; 0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31898892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Yu, Lianghao</creatorcontrib><creatorcontrib>Xia, Zhou</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Tian, Zhengnan</creatorcontrib><creatorcontrib>Zou, Guifu</creatorcontrib><creatorcontrib>Dou, Shi Xue</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored thus far. Herein, we demonstrate a 3D-printed sodium-ion hybrid capacitor (SIC) based on nitrogen-doped MXene (
-Ti
C
T
) anode and activated carbon cathode. N-Ti
C
T
affording a well-defined porous structure and uniform nitrogen doping can be obtained via a sacrificial template method. Thus-formulated ink can be directly printed to form electrode architecture without the request of a conventional current collector. The 3D-printed SICs, with a large areal mass loading up to 15.2 mg cm
, can harvest an areal energy/power density of 1.18 mWh cm
/40.15 mW cm
, outperforming the state-of-the-art 3D-printed energy storage devices. Furthermore, our SIC also achieves a gravimetric energy/power density of 101.6 Wh kg
/3269 W kg
. This work demonstrates that the 3D printing technology is versatile enough to construct emerging energy storage systems reconciling high energy and power density.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwjAcxhujEUTP3ky_wODfdVvboxkqJKgkYsJt6fqCNaxdWjjw7cWAnp4neV4OP4TuCYwJ5GQiVfLSh7FogQOFCzQkglYZ8Gp9-e9LMkA3KX0DlIyz6hoNKOGCc5EPUaBTvIzO75zf4GDxMsSwT_jN7WLYGJ9NQ280XjlMcY1z_Lo23uAPJa0NW52wDRHP3OYrW5p49J306hgH7fZdNg8ezw5tdBrXspfK7UJMt-jKym0yd2cdoc_np1U9yxbvL_P6cZEpAiLPyqIoqrayTEtVKmKsgAqYKsuSEMKgYJoTVlFglOdAbaFabpQwgmpeaLCcjtDk9KtiSCka2_TRdTIeGgLNL7rmjK45ozsuHk6Lft92Rv_3_1jRH-5MakY</recordid><startdate>20200128</startdate><enddate>20200128</enddate><creator>Fan, Zhaodi</creator><creator>Wei, Chaohui</creator><creator>Yu, Lianghao</creator><creator>Xia, Zhou</creator><creator>Cai, Jingsheng</creator><creator>Tian, Zhengnan</creator><creator>Zou, Guifu</creator><creator>Dou, Shi Xue</creator><creator>Sun, Jingyu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8342-7768</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20200128</creationdate><title>3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors</title><author>Fan, Zhaodi ; Wei, Chaohui ; Yu, Lianghao ; Xia, Zhou ; Cai, Jingsheng ; Tian, Zhengnan ; Zou, Guifu ; Dou, Shi Xue ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Wei, Chaohui</creatorcontrib><creatorcontrib>Yu, Lianghao</creatorcontrib><creatorcontrib>Xia, Zhou</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Tian, Zhengnan</creatorcontrib><creatorcontrib>Zou, Guifu</creatorcontrib><creatorcontrib>Dou, Shi Xue</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Zhaodi</au><au>Wei, Chaohui</au><au>Yu, Lianghao</au><au>Xia, Zhou</au><au>Cai, Jingsheng</au><au>Tian, Zhengnan</au><au>Zou, Guifu</au><au>Dou, Shi Xue</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2020-01-28</date><risdate>2020</risdate><volume>14</volume><issue>1</issue><spage>867</spage><epage>876</epage><pages>867-876</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored thus far. Herein, we demonstrate a 3D-printed sodium-ion hybrid capacitor (SIC) based on nitrogen-doped MXene (
-Ti
C
T
) anode and activated carbon cathode. N-Ti
C
T
affording a well-defined porous structure and uniform nitrogen doping can be obtained via a sacrificial template method. Thus-formulated ink can be directly printed to form electrode architecture without the request of a conventional current collector. The 3D-printed SICs, with a large areal mass loading up to 15.2 mg cm
, can harvest an areal energy/power density of 1.18 mWh cm
/40.15 mW cm
, outperforming the state-of-the-art 3D-printed energy storage devices. Furthermore, our SIC also achieves a gravimetric energy/power density of 101.6 Wh kg
/3269 W kg
. This work demonstrates that the 3D printing technology is versatile enough to construct emerging energy storage systems reconciling high energy and power density.</abstract><cop>United States</cop><pmid>31898892</pmid><doi>10.1021/acsnano.9b08030</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8342-7768</orcidid><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2020-01, Vol.14 (1), p.867-876 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsnano_9b08030 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | 3D Printing of Porous Nitrogen-Doped Ti 3 C 2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Porous%20Nitrogen-Doped%20Ti%203%20C%202%20MXene%20Scaffolds%20for%20High-Performance%20Sodium-Ion%20Hybrid%20Capacitors&rft.jtitle=ACS%20nano&rft.au=Fan,%20Zhaodi&rft.date=2020-01-28&rft.volume=14&rft.issue=1&rft.spage=867&rft.epage=876&rft.pages=867-876&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.9b08030&rft_dat=%3Cpubmed_cross%3E31898892%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1092-54446b6f7dac5c1ef90607c5551117047d817630738203f4cb8ec9e93d84d0f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/31898892&rfr_iscdi=true |