Loading…
Artificially Engineered Cubic Iron Oxide Nanoparticle as a High-Performance Magnetic Particle Imaging Tracer for Stem Cell Tracking
Stem cell therapies are increasingly recognized as the future direction of regenerative medicine, but the biological fate of the administrated stem cells remains a major concern for clinical translation, which calls for an approach to efficiently monitoring the stem cell behaviors in vivo. Magnetic...
Saved in:
Published in: | ACS nano 2020-02, Vol.14 (2), p.2053-2062 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stem cell therapies are increasingly recognized as the future direction of regenerative medicine, but the biological fate of the administrated stem cells remains a major concern for clinical translation, which calls for an approach to efficiently monitoring the stem cell behaviors in vivo. Magnetic particle imaging (MPI) is an emerging technology for cell tracking; however, its utility has been largely restricted due to the lack of optimal magnetic nanoparticle tracers. Herein, by controlled engineering of the size and shape of magnetic nanoparticles tailored to MPI physics theory, a specialized MPI tracer, based on cubic iron oxide nanoparticles with an edge length of 22 nm (CIONs-22), is developed. Due to the inherent lower proportion of disordered surface spins, CIONs-22 exhibit significantly larger saturation magnetization than that of spherical ones, while they possess similar saturation magnetization but smaller coercivity compared to larger-sized CIONs. These magnetic properties of CIONs-22 warrant high sensitivity and resolution of MPI. With their efficient cellular uptake, CIONs-22 exhibit superior MPI performance for stem cell labeling and tracking compared to the commercialized tracer Vivotrax. By virtue of these advantages, CIONs-22 enable real-time and prolonged monitoring of the spatiotemporal trajectory of stem cells transplanted to hindlimb ischemia mice, which demonstrates the great potential of CIONs-22 as MPI tracers to advance stem cell therapies. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b08660 |