Loading…

High-Performance Single-Photon Sources at Telecom Wavelength Based on Broadband Hybrid Circular Bragg Gratings

Semiconductor quantum dots embedded in hybrid circular Bragg gratings are a promising platform for the efficient generation of nonclassical light. The scalable fabrication of multiple devices with similar performance is highly desirable for their practical use as sources of single and entangled phot...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2022-09, Vol.9 (9), p.3060-3066
Main Authors: Barbiero, Andrea, Huwer, Jan, Skiba-Szymanska, Joanna, Ellis, David J. P., Stevenson, R. Mark, Müller, Tina, Shooter, Ginny, Goff, Lucy E., Ritchie, David A., Shields, Andrew J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor quantum dots embedded in hybrid circular Bragg gratings are a promising platform for the efficient generation of nonclassical light. The scalable fabrication of multiple devices with similar performance is highly desirable for their practical use as sources of single and entangled photons, while the ability to operate at telecom wavelength is essential for their integration with the existing fiber infrastructure. In this work, we combine the promising properties of broadband hybrid circular Bragg gratings with a membrane-transfer process performed on 3 in. wafer scale. We develop and characterize single-photon sources based on InAs/GaAs quantum dots emitting in the telecom O-band, demonstrating bright single-photon emission with Purcell factor >5 and count rates up to 10 MHz. Furthermore, we address the question of reproducibility by benchmarking the performance of 10 devices covering a wide spectral range of 50 nm within the O-band.
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.2c00810