Loading…

Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources

Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2023-04, Vol.10 (4), p.959-967
Main Authors: Melo, Emerson G., Eshbaugh, William, Flagg, Edward B., Davanco, Marcelo
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83
cites cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83
container_end_page 967
container_issue 4
container_start_page 959
container_title ACS photonics
container_volume 10
creator Melo, Emerson G.
Eshbaugh, William
Flagg, Edward B.
Davanco, Marcelo
description Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.
doi_str_mv 10.1021/acsphotonics.2c00929
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_2c00929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c354980399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYP-CQP9DhOG3WHtEYMGmIj8G5SjN3pOrHlKST-PcrbIedONmS_divHsZuBUwFoLjTxu--u9C11vgpGoAMsws2QikhigHx8qy_ZhPvKwAQkEil4hH7eOnrYLuiIhPsnviy3ZPzxB_I223Lu5Kvu9puonXQgfh7r9vQN3zR2BDI8bVttzVFb3__h83eGfI37KrUtafJqY7Z1-Pic_4crV6flvP7VaQRMUSKMNUbI5UEGhKlpkSlCq2zFFMpFWZoirQQMRYymelMUFwQaUrEzMSJ3qRyzOLjXeM67x2V-c7ZRrufXED-qyY_V5Of1AwYHLFhmldD5HYI-T9yALfgbHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</creator><creatorcontrib>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</creatorcontrib><description>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.2c00929</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2023-04, Vol.10 (4), p.959-967</ispartof><rights>2022 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</citedby><cites>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</cites><orcidid>0000-0001-8833-650X ; 0000-0002-7026-5747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Melo, Emerson G.</creatorcontrib><creatorcontrib>Eshbaugh, William</creatorcontrib><creatorcontrib>Flagg, Edward B.</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYP-CQP9DhOG3WHtEYMGmIj8G5SjN3pOrHlKST-PcrbIedONmS_divHsZuBUwFoLjTxu--u9C11vgpGoAMsws2QikhigHx8qy_ZhPvKwAQkEil4hH7eOnrYLuiIhPsnviy3ZPzxB_I223Lu5Kvu9puonXQgfh7r9vQN3zR2BDI8bVttzVFb3__h83eGfI37KrUtafJqY7Z1-Pic_4crV6flvP7VaQRMUSKMNUbI5UEGhKlpkSlCq2zFFMpFWZoirQQMRYymelMUFwQaUrEzMSJ3qRyzOLjXeM67x2V-c7ZRrufXED-qyY_V5Of1AwYHLFhmldD5HYI-T9yALfgbHA</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Melo, Emerson G.</creator><creator>Eshbaugh, William</creator><creator>Flagg, Edward B.</creator><creator>Davanco, Marcelo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8833-650X</orcidid><orcidid>https://orcid.org/0000-0002-7026-5747</orcidid></search><sort><creationdate>20230419</creationdate><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><author>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Melo, Emerson G.</creatorcontrib><creatorcontrib>Eshbaugh, William</creatorcontrib><creatorcontrib>Flagg, Edward B.</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Emerson G.</au><au>Eshbaugh, William</au><au>Flagg, Edward B.</au><au>Davanco, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>959</spage><epage>967</epage><pages>959-967</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.2c00929</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8833-650X</orcidid><orcidid>https://orcid.org/0000-0002-7026-5747</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2023-04, Vol.10 (4), p.959-967
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_2c00929
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Inverse%20Design%20of%20Solid-State%20Quantum%20Emitter%20Single-Photon%20Sources&rft.jtitle=ACS%20photonics&rft.au=Melo,%20Emerson%20G.&rft.date=2023-04-19&rft.volume=10&rft.issue=4&rft.spage=959&rft.epage=967&rft.pages=959-967&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.2c00929&rft_dat=%3Cacs_cross%3Ec354980399%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true