Loading…
Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources
Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare...
Saved in:
Published in: | ACS photonics 2023-04, Vol.10 (4), p.959-967 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83 |
---|---|
cites | cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83 |
container_end_page | 967 |
container_issue | 4 |
container_start_page | 959 |
container_title | ACS photonics |
container_volume | 10 |
creator | Melo, Emerson G. Eshbaugh, William Flagg, Edward B. Davanco, Marcelo |
description | Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries. |
doi_str_mv | 10.1021/acsphotonics.2c00929 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_2c00929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c354980399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYP-CQP9DhOG3WHtEYMGmIj8G5SjN3pOrHlKST-PcrbIedONmS_divHsZuBUwFoLjTxu--u9C11vgpGoAMsws2QikhigHx8qy_ZhPvKwAQkEil4hH7eOnrYLuiIhPsnviy3ZPzxB_I223Lu5Kvu9puonXQgfh7r9vQN3zR2BDI8bVttzVFb3__h83eGfI37KrUtafJqY7Z1-Pic_4crV6flvP7VaQRMUSKMNUbI5UEGhKlpkSlCq2zFFMpFWZoirQQMRYymelMUFwQaUrEzMSJ3qRyzOLjXeM67x2V-c7ZRrufXED-qyY_V5Of1AwYHLFhmldD5HYI-T9yALfgbHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</creator><creatorcontrib>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</creatorcontrib><description>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.2c00929</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2023-04, Vol.10 (4), p.959-967</ispartof><rights>2022 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</citedby><cites>FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</cites><orcidid>0000-0001-8833-650X ; 0000-0002-7026-5747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Melo, Emerson G.</creatorcontrib><creatorcontrib>Eshbaugh, William</creatorcontrib><creatorcontrib>Flagg, Edward B.</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEtPYP-CQP9DhOG3WHtEYMGmIj8G5SjN3pOrHlKST-PcrbIedONmS_divHsZuBUwFoLjTxu--u9C11vgpGoAMsws2QikhigHx8qy_ZhPvKwAQkEil4hH7eOnrYLuiIhPsnviy3ZPzxB_I223Lu5Kvu9puonXQgfh7r9vQN3zR2BDI8bVttzVFb3__h83eGfI37KrUtafJqY7Z1-Pic_4crV6flvP7VaQRMUSKMNUbI5UEGhKlpkSlCq2zFFMpFWZoirQQMRYymelMUFwQaUrEzMSJ3qRyzOLjXeM67x2V-c7ZRrufXED-qyY_V5Of1AwYHLFhmldD5HYI-T9yALfgbHA</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Melo, Emerson G.</creator><creator>Eshbaugh, William</creator><creator>Flagg, Edward B.</creator><creator>Davanco, Marcelo</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8833-650X</orcidid><orcidid>https://orcid.org/0000-0002-7026-5747</orcidid></search><sort><creationdate>20230419</creationdate><title>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</title><author>Melo, Emerson G. ; Eshbaugh, William ; Flagg, Edward B. ; Davanco, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Melo, Emerson G.</creatorcontrib><creatorcontrib>Eshbaugh, William</creatorcontrib><creatorcontrib>Flagg, Edward B.</creatorcontrib><creatorcontrib>Davanco, Marcelo</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melo, Emerson G.</au><au>Eshbaugh, William</au><au>Flagg, Edward B.</au><au>Davanco, Marcelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>959</spage><epage>967</epage><pages>959-967</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Single solid-state quantum emitters offer considerable potential for the implementation of sources of single indistinguishable photons, which are central to many photonic quantum information systems. Nanophotonic geometry optimization with multiple performance metrics is imperative to convert a bare quantum emitter into a single-photon source that approaches the necessary levels of purity, indistinguishability, and brightness for quantum photonics. We present an inverse design methodology that simultaneously targets two important figures-of-merit for high-performance quantum light sources: the Purcell radiative rate enhancement and the coupling efficiency into a desired light collection channel. We explicitly address geometry-dependent power emission, a critical but often overlooked aspect of gradient-based optimization of quantum emitter single-photon sources. We illustrate the efficacy of our method through the design of a single-photon source based on a quantum emitter in a GaAs nanophotonic structure that provides a Purcell factor F p = 21 with a 94% waveguide coupling efficiency, while respecting a geometric constraint to minimize emitter decoherence caused by etched sidewalls. Our results indicate that multiobjective inverse design can yield competitive performance with more favorable trade-offs than conventional approaches based on a pre-established waveguide or cavity geometries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.2c00929</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8833-650X</orcidid><orcidid>https://orcid.org/0000-0002-7026-5747</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2023-04, Vol.10 (4), p.959-967 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsphotonics_2c00929 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Multiobjective Inverse Design of Solid-State Quantum Emitter Single-Photon Sources |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20Inverse%20Design%20of%20Solid-State%20Quantum%20Emitter%20Single-Photon%20Sources&rft.jtitle=ACS%20photonics&rft.au=Melo,%20Emerson%20G.&rft.date=2023-04-19&rft.volume=10&rft.issue=4&rft.spage=959&rft.epage=967&rft.pages=959-967&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.2c00929&rft_dat=%3Cacs_cross%3Ec354980399%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a222t-6e28adc3630e0008cf266baa9828336292cb8b142b357a91e4beeae517c45ad83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |