Loading…
Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics
We present a novel metric-learning approach based on combined triplet loss and mean-squared error for providing more functionality (e.g., more effective similarity measures) to the machine-learning algorithms used for the knowledge discovery and inverse design of nanophotonic structures compared to...
Saved in:
Published in: | ACS photonics 2023-04, Vol.10 (4), p.900-909 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073 |
---|---|
cites | cdi_FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073 |
container_end_page | 909 |
container_issue | 4 |
container_start_page | 900 |
container_title | ACS photonics |
container_volume | 10 |
creator | Zandehshahvar, Mohammadreza Kiarashi, Yashar Zhu, Muliang Bao, Daqian H Javani, Mohammad Pourabolghasem, Reza Adibi, Ali |
description | We present a novel metric-learning approach based on combined triplet loss and mean-squared error for providing more functionality (e.g., more effective similarity measures) to the machine-learning algorithms used for the knowledge discovery and inverse design of nanophotonic structures compared to commonly used mean-squared error and mean-absolute error. We demonstrate the main shortcoming of the existing metrics (or loss functions) in mapping the nanophotonic responses into lower-dimensional spaces in keeping similar responses close to each other. We show how a systematic metric-learning paradigm can resolve this issue and provide physically interpretable mappings of the nanophotonic responses while facilitating the visualization. The presented metric-learning paradigm can be combined with almost all existing machine-learning and deep-learning approaches for the investigation of nanophotonic structures. Thus, the results of this paper can have a transformative impact on using machine learning and deep learning for knowledge discovery and inverse design in nanophotonics. |
doi_str_mv | 10.1021/acsphotonics.2c01331 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_2c01331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c753996030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gYf8ga2Tr_3wJkVtZase9LzE2Ym7RZOSrIj_3pWW0pOneWHmmRkexi4FzAVIcWUxbbswBN9jmksEoZQ4YROpFGQapDw9yudsltIGAAQYled6wh7WNMQeeU02-t6_X_PlGCilMfOhI_4cviny4PjaYtd7Okzy3vNH68Ph-AU7c_Yj0Wxfp-z17vZlsczqp_vV4qbOrFLlkLVKvRkjSuNcm1dCWwmVAnSlkLoAUxCikRWCJoOFqsqiJYHUknVohIFCTZne7cUYUorkmm3sP238aQQ0f0qaYyXNXsmIwQ4bu80mfEU_Pvk_8gs5f2jG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zandehshahvar, Mohammadreza ; Kiarashi, Yashar ; Zhu, Muliang ; Bao, Daqian ; H Javani, Mohammad ; Pourabolghasem, Reza ; Adibi, Ali</creator><creatorcontrib>Zandehshahvar, Mohammadreza ; Kiarashi, Yashar ; Zhu, Muliang ; Bao, Daqian ; H Javani, Mohammad ; Pourabolghasem, Reza ; Adibi, Ali</creatorcontrib><description>We present a novel metric-learning approach based on combined triplet loss and mean-squared error for providing more functionality (e.g., more effective similarity measures) to the machine-learning algorithms used for the knowledge discovery and inverse design of nanophotonic structures compared to commonly used mean-squared error and mean-absolute error. We demonstrate the main shortcoming of the existing metrics (or loss functions) in mapping the nanophotonic responses into lower-dimensional spaces in keeping similar responses close to each other. We show how a systematic metric-learning paradigm can resolve this issue and provide physically interpretable mappings of the nanophotonic responses while facilitating the visualization. The presented metric-learning paradigm can be combined with almost all existing machine-learning and deep-learning approaches for the investigation of nanophotonic structures. Thus, the results of this paper can have a transformative impact on using machine learning and deep learning for knowledge discovery and inverse design in nanophotonics.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.2c01331</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2023-04, Vol.10 (4), p.900-909</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073</citedby><cites>FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073</cites><orcidid>0000-0002-1741-4504 ; 0000-0003-2628-0584 ; 0000-0002-6249-905X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zandehshahvar, Mohammadreza</creatorcontrib><creatorcontrib>Kiarashi, Yashar</creatorcontrib><creatorcontrib>Zhu, Muliang</creatorcontrib><creatorcontrib>Bao, Daqian</creatorcontrib><creatorcontrib>H Javani, Mohammad</creatorcontrib><creatorcontrib>Pourabolghasem, Reza</creatorcontrib><creatorcontrib>Adibi, Ali</creatorcontrib><title>Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>We present a novel metric-learning approach based on combined triplet loss and mean-squared error for providing more functionality (e.g., more effective similarity measures) to the machine-learning algorithms used for the knowledge discovery and inverse design of nanophotonic structures compared to commonly used mean-squared error and mean-absolute error. We demonstrate the main shortcoming of the existing metrics (or loss functions) in mapping the nanophotonic responses into lower-dimensional spaces in keeping similar responses close to each other. We show how a systematic metric-learning paradigm can resolve this issue and provide physically interpretable mappings of the nanophotonic responses while facilitating the visualization. The presented metric-learning paradigm can be combined with almost all existing machine-learning and deep-learning approaches for the investigation of nanophotonic structures. Thus, the results of this paper can have a transformative impact on using machine learning and deep learning for knowledge discovery and inverse design in nanophotonics.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gYf8ga2Tr_3wJkVtZase9LzE2Ym7RZOSrIj_3pWW0pOneWHmmRkexi4FzAVIcWUxbbswBN9jmksEoZQ4YROpFGQapDw9yudsltIGAAQYled6wh7WNMQeeU02-t6_X_PlGCilMfOhI_4cviny4PjaYtd7Okzy3vNH68Ph-AU7c_Yj0Wxfp-z17vZlsczqp_vV4qbOrFLlkLVKvRkjSuNcm1dCWwmVAnSlkLoAUxCikRWCJoOFqsqiJYHUknVohIFCTZne7cUYUorkmm3sP238aQQ0f0qaYyXNXsmIwQ4bu80mfEU_Pvk_8gs5f2jG</recordid><startdate>20230419</startdate><enddate>20230419</enddate><creator>Zandehshahvar, Mohammadreza</creator><creator>Kiarashi, Yashar</creator><creator>Zhu, Muliang</creator><creator>Bao, Daqian</creator><creator>H Javani, Mohammad</creator><creator>Pourabolghasem, Reza</creator><creator>Adibi, Ali</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1741-4504</orcidid><orcidid>https://orcid.org/0000-0003-2628-0584</orcidid><orcidid>https://orcid.org/0000-0002-6249-905X</orcidid></search><sort><creationdate>20230419</creationdate><title>Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics</title><author>Zandehshahvar, Mohammadreza ; Kiarashi, Yashar ; Zhu, Muliang ; Bao, Daqian ; H Javani, Mohammad ; Pourabolghasem, Reza ; Adibi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zandehshahvar, Mohammadreza</creatorcontrib><creatorcontrib>Kiarashi, Yashar</creatorcontrib><creatorcontrib>Zhu, Muliang</creatorcontrib><creatorcontrib>Bao, Daqian</creatorcontrib><creatorcontrib>H Javani, Mohammad</creatorcontrib><creatorcontrib>Pourabolghasem, Reza</creatorcontrib><creatorcontrib>Adibi, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zandehshahvar, Mohammadreza</au><au>Kiarashi, Yashar</au><au>Zhu, Muliang</au><au>Bao, Daqian</au><au>H Javani, Mohammad</au><au>Pourabolghasem, Reza</au><au>Adibi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2023-04-19</date><risdate>2023</risdate><volume>10</volume><issue>4</issue><spage>900</spage><epage>909</epage><pages>900-909</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>We present a novel metric-learning approach based on combined triplet loss and mean-squared error for providing more functionality (e.g., more effective similarity measures) to the machine-learning algorithms used for the knowledge discovery and inverse design of nanophotonic structures compared to commonly used mean-squared error and mean-absolute error. We demonstrate the main shortcoming of the existing metrics (or loss functions) in mapping the nanophotonic responses into lower-dimensional spaces in keeping similar responses close to each other. We show how a systematic metric-learning paradigm can resolve this issue and provide physically interpretable mappings of the nanophotonic responses while facilitating the visualization. The presented metric-learning paradigm can be combined with almost all existing machine-learning and deep-learning approaches for the investigation of nanophotonic structures. Thus, the results of this paper can have a transformative impact on using machine learning and deep learning for knowledge discovery and inverse design in nanophotonics.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.2c01331</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1741-4504</orcidid><orcidid>https://orcid.org/0000-0003-2628-0584</orcidid><orcidid>https://orcid.org/0000-0002-6249-905X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2023-04, Vol.10 (4), p.900-909 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsphotonics_2c01331 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Metric Learning: Harnessing the Power of Machine Learning in Nanophotonics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metric%20Learning:%20Harnessing%20the%20Power%20of%20Machine%20Learning%20in%20Nanophotonics&rft.jtitle=ACS%20photonics&rft.au=Zandehshahvar,%20Mohammadreza&rft.date=2023-04-19&rft.volume=10&rft.issue=4&rft.spage=900&rft.epage=909&rft.pages=900-909&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.2c01331&rft_dat=%3Cacs_cross%3Ec753996030%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a338t-d33b55185ffd6914a20930cf81247057ecc529c04e5c73987de1cedeafc515073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |