Loading…

Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer

Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectr...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2023-01, Vol.10 (1), p.225-233
Main Authors: Wen, Junren, Hao, Lingyun, Gao, Cheng, Wang, Hailan, Mo, Kun, Yuan, Wenjia, Chen, Xiao, Wang, Yusi, Zhang, Yueguang, Shao, Yuchuan, Yang, Chenying, Shen, Weidong
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153
cites cdi_FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153
container_end_page 233
container_issue 1
container_start_page 225
container_title ACS photonics
container_volume 10
creator Wen, Junren
Hao, Lingyun
Gao, Cheng
Wang, Hailan
Mo, Kun
Yuan, Wenjia
Chen, Xiao
Wang, Yusi
Zhang, Yueguang
Shao, Yuchuan
Yang, Chenying
Shen, Weidong
description Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.
doi_str_mv 10.1021/acsphotonics.2c01498
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_2c01498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a720917290</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpG3DIC6Ssf5I4x9JSihTgQDlHrr0BV86PbPcAT0-q9tATp93R7LcaDSH3FOYUGH1QOgzffew7q8OcaaCilFdkwjiHVABj1xf7LZmFsAcAChnPczEhbyvEIalQ-c52X-mjCmiSV9tZFQ_e_o5i4Vy6suhQR2918umiV7pvB6VjsrauTT6Go9W3GNHfkZtGuYCz85yS7fppu9yk1fvzy3JRpYqVLKZSscJkXBmDZS5LcZQgEXO547tGlrIpiqY0NEMhMiO4AM7MeFQoriXN-JSI01vt-xA8NvXgbav8T02hPrZSX7ZSn1sZMThho1vv-4Pvxoz_I39FTWqI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wen, Junren ; Hao, Lingyun ; Gao, Cheng ; Wang, Hailan ; Mo, Kun ; Yuan, Wenjia ; Chen, Xiao ; Wang, Yusi ; Zhang, Yueguang ; Shao, Yuchuan ; Yang, Chenying ; Shen, Weidong</creator><creatorcontrib>Wen, Junren ; Hao, Lingyun ; Gao, Cheng ; Wang, Hailan ; Mo, Kun ; Yuan, Wenjia ; Chen, Xiao ; Wang, Yusi ; Zhang, Yueguang ; Shao, Yuchuan ; Yang, Chenying ; Shen, Weidong</creatorcontrib><description>Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.2c01498</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2023-01, Vol.10 (1), p.225-233</ispartof><rights>2022 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153</citedby><cites>FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153</cites><orcidid>0000-0002-1673-9729 ; 0000-0003-0978-6807 ; 0000-0003-4998-1404 ; 0000-0002-1300-6562 ; 0000-0001-7155-456X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Junren</creatorcontrib><creatorcontrib>Hao, Lingyun</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, Hailan</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Yuan, Wenjia</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Zhang, Yueguang</creatorcontrib><creatorcontrib>Shao, Yuchuan</creatorcontrib><creatorcontrib>Yang, Chenying</creatorcontrib><creatorcontrib>Shen, Weidong</creatorcontrib><title>Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpG3DIC6Ssf5I4x9JSihTgQDlHrr0BV86PbPcAT0-q9tATp93R7LcaDSH3FOYUGH1QOgzffew7q8OcaaCilFdkwjiHVABj1xf7LZmFsAcAChnPczEhbyvEIalQ-c52X-mjCmiSV9tZFQ_e_o5i4Vy6suhQR2918umiV7pvB6VjsrauTT6Go9W3GNHfkZtGuYCz85yS7fppu9yk1fvzy3JRpYqVLKZSscJkXBmDZS5LcZQgEXO547tGlrIpiqY0NEMhMiO4AM7MeFQoriXN-JSI01vt-xA8NvXgbav8T02hPrZSX7ZSn1sZMThho1vv-4Pvxoz_I39FTWqI</recordid><startdate>20230118</startdate><enddate>20230118</enddate><creator>Wen, Junren</creator><creator>Hao, Lingyun</creator><creator>Gao, Cheng</creator><creator>Wang, Hailan</creator><creator>Mo, Kun</creator><creator>Yuan, Wenjia</creator><creator>Chen, Xiao</creator><creator>Wang, Yusi</creator><creator>Zhang, Yueguang</creator><creator>Shao, Yuchuan</creator><creator>Yang, Chenying</creator><creator>Shen, Weidong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1673-9729</orcidid><orcidid>https://orcid.org/0000-0003-0978-6807</orcidid><orcidid>https://orcid.org/0000-0003-4998-1404</orcidid><orcidid>https://orcid.org/0000-0002-1300-6562</orcidid><orcidid>https://orcid.org/0000-0001-7155-456X</orcidid></search><sort><creationdate>20230118</creationdate><title>Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer</title><author>Wen, Junren ; Hao, Lingyun ; Gao, Cheng ; Wang, Hailan ; Mo, Kun ; Yuan, Wenjia ; Chen, Xiao ; Wang, Yusi ; Zhang, Yueguang ; Shao, Yuchuan ; Yang, Chenying ; Shen, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Wen, Junren</creatorcontrib><creatorcontrib>Hao, Lingyun</creatorcontrib><creatorcontrib>Gao, Cheng</creatorcontrib><creatorcontrib>Wang, Hailan</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Yuan, Wenjia</creatorcontrib><creatorcontrib>Chen, Xiao</creatorcontrib><creatorcontrib>Wang, Yusi</creatorcontrib><creatorcontrib>Zhang, Yueguang</creatorcontrib><creatorcontrib>Shao, Yuchuan</creatorcontrib><creatorcontrib>Yang, Chenying</creatorcontrib><creatorcontrib>Shen, Weidong</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Junren</au><au>Hao, Lingyun</au><au>Gao, Cheng</au><au>Wang, Hailan</au><au>Mo, Kun</au><au>Yuan, Wenjia</au><au>Chen, Xiao</au><au>Wang, Yusi</au><au>Zhang, Yueguang</au><au>Shao, Yuchuan</au><au>Yang, Chenying</au><au>Shen, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2023-01-18</date><risdate>2023</risdate><volume>10</volume><issue>1</issue><spage>225</spage><epage>233</epage><pages>225-233</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Conventional benchtop spectrometers with bulky dispersive optics and long optical path lengths display limitations where the significance of miniaturization, real-time detection, and low cost transcend the ultrafine resolution and wide spectral range. Here, we demonstrate a miniaturized all-dielectric ultracompact film spectrometer based on deep learning working in the single-shot mode. The scheme employs 16 spectral encoders with simple five-layer film stacks where merely the thickness of the intermediate high-index modulation layer is varied to realize unique encoded transmission spectra. Structural parameters as well as transmission spectra of the filters are predesigned to guarantee weak correlation and highly efficient encoding. Leveraging a trained reconstruction network, the absolute spectra of various nonluminous samples are successfully reconstructed excluding the emitting spectrum of the light source and the spectral response of the detector. The remarkable reconstructed spectral imaging result for the color board is presented and the reconstructed spectra match well with the measured ones for different patches using the identical network. We utilized the least number of spectral encoders ever since to guarantee efficient encoding, along with the single thickness-variant modulation layer, which shows potential for mass, rapid, large-area production by combining deposition with nanoimprint. Instead of the synthetic Gaussian line shape spectra, a training dataset composed of diverse spectrum types is adopted to achieve fine generalization of the trained reconstruction network. In addition, by retraining the neural network, the reconstruction network is modified to fit for the actual filter functions of the spectral encoders, thus better reconstruction performance. The proposed miniaturized spectrometer has great prospects in the fields of consumer electronics, environmental monitoring, and disaster prevention.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.2c01498</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1673-9729</orcidid><orcidid>https://orcid.org/0000-0003-0978-6807</orcidid><orcidid>https://orcid.org/0000-0003-4998-1404</orcidid><orcidid>https://orcid.org/0000-0002-1300-6562</orcidid><orcidid>https://orcid.org/0000-0001-7155-456X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2023-01, Vol.10 (1), p.225-233
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_2c01498
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Deep Learning-Based Miniaturized All-Dielectric Ultracompact Film Spectrometer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Miniaturized%20All-Dielectric%20Ultracompact%20Film%20Spectrometer&rft.jtitle=ACS%20photonics&rft.au=Wen,%20Junren&rft.date=2023-01-18&rft.volume=10&rft.issue=1&rft.spage=225&rft.epage=233&rft.pages=225-233&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.2c01498&rft_dat=%3Cacs_cross%3Ea720917290%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-8a27d53adde96894a27d08ee68b3bf898f77f9d15e445d434032da277a3c8153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true