Loading…
Chiral Optical Properties of Plasmonic Kagome Lattices
Kagome lattices can be considered hexagonal lattices with a three-nanoparticle unit cell whose symmetry may lead to the formation of higher-order topological states. This work reports the emergence of polarization-dependent features in the optical band structures of plasmonic Kagome lattices through...
Saved in:
Published in: | ACS photonics 2024-02, Vol.11 (2), p.673-681 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Kagome lattices can be considered hexagonal lattices with a three-nanoparticle unit cell whose symmetry may lead to the formation of higher-order topological states. This work reports the emergence of polarization-dependent features in the optical band structures of plasmonic Kagome lattices through lattice engineering. By expanding the separations between particles in a unit cell while preserving lattice spacing, we observed additional modes at the K-points of aluminum nanoparticle Kagome lattices. As the rotational symmetry was reduced from 6- to 3-fold, a splitting at the K-point was observed as well as the presence of an additional surface lattice resonance (SLR) band under linear polarization. This SLR band also exhibited a chiral response that depended on the direction of circularly polarized light and resulted in asymmetry in the optical band structure. The polarization-dependent response of plasmonic Kagome lattices can inform the design of systems that support topological states at visible wavelengths. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.3c01518 |