Loading…

High-Mobility Toolkit for Quantum Dot Films

Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of su...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2016-11, Vol.3 (11), p.2059-2067
Main Authors: Gómez-Campos, Francisco M, Rodríguez-Bolívar, Salvador, Califano, Marco
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Semiconductor colloidal quantum dots (CQDs) are being increasingly exploited in electronics, optoelectronics, and solar energy harvesting, using a variety of different architectures, mostly based on ordered 2D or 3D arrays of these nanostructures. A crucial issue for optimizing the performance of such devices is the ability to predict and tune the transport properties of these assemblies. In this work we provide general guidelines to precisely that effect, indicating specific materials, crystal structures, lattice arrangements, surface stoichiometries, and morphologies that favor high electron mobilities in these systems and, conversely, materials that will exhibit low mobilities if nanostructured. At the same time our results evidence a surprising independence of the film’s transport properties from those of the bulk material from which the dots are made, highlighting the crucial role of theoretical modeling to guide device design.
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.6b00377