Loading…

Silicon–Organic and Plasmonic–Organic Hybrid Photonics

Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the size...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2017-07, Vol.4 (7), p.1576-1590
Main Authors: Heni, Wolfgang, Kutuvantavida, Yasar, Haffner, Christian, Zwickel, Heiner, Kieninger, Clemens, Wolf, Stefan, Lauermann, Matthias, Fedoryshyn, Yuriy, Tillack, Andreas F, Johnson, Lewis E, Elder, Delwin L, Robinson, Bruce H, Freude, Wolfgang, Koos, Christian, Leuthold, Juerg, Dalton, Larry R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563
cites cdi_FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563
container_end_page 1590
container_issue 7
container_start_page 1576
container_title ACS photonics
container_volume 4
creator Heni, Wolfgang
Kutuvantavida, Yasar
Haffner, Christian
Zwickel, Heiner
Kieninger, Clemens
Wolf, Stefan
Lauermann, Matthias
Fedoryshyn, Yuriy
Tillack, Andreas F
Johnson, Lewis E
Elder, Delwin L
Robinson, Bruce H
Freude, Wolfgang
Koos, Christian
Leuthold, Juerg
Dalton, Larry R
description Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the sizes of electronic and photonic circuits; achieving low-loss transition between electronics, photonics, and plasmonics; and developing and integrating new materials. This review focuses on a hybrid material approach illustrating the importance of both chemical and engineering concepts. Silicon–organic hybrid (SOH) and plasmonic–organic hybrid (POH) technologies have permitted dramatic improvements in electro-optic (EO) performance relevant to both digital and analog signal processing. For example, the voltage–length product of devices has been reduced to less than 40 Vμm, facilitating device footprints of
doi_str_mv 10.1021/acsphotonics.7b00224
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_7b00224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a333607503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563</originalsourceid><addsrcrecordid>eNp9kEtKA0EQhhtRMMTcwEUuMLH6NdPjToIaIRBBXTfVj9EJk-nQHRfZeQdv6EnskAizclWPn--v4ifkmsKMAqM3aNP2I-xC39o0qwwAY-KMjBjnUIg8nA_6SzJJaQ0AFCQvSzEity9t19rQ_3x9r-I7ZpMp9m763GHaHCwH-8XexDZLf8euyEWDXfKTUx2Tt4f71_miWK4en-Z3ywK5VLuC1cCMdKjAyUYwwZShFffGusoJCbL2srFYolfgZU3ReeasUhWDWoGSJR8TcfS1MaQUfaO3sd1g3GsK-hCBHkagTxFkDI5YVvU6fMY-P_k_8gs112U4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Silicon–Organic and Plasmonic–Organic Hybrid Photonics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Heni, Wolfgang ; Kutuvantavida, Yasar ; Haffner, Christian ; Zwickel, Heiner ; Kieninger, Clemens ; Wolf, Stefan ; Lauermann, Matthias ; Fedoryshyn, Yuriy ; Tillack, Andreas F ; Johnson, Lewis E ; Elder, Delwin L ; Robinson, Bruce H ; Freude, Wolfgang ; Koos, Christian ; Leuthold, Juerg ; Dalton, Larry R</creator><creatorcontrib>Heni, Wolfgang ; Kutuvantavida, Yasar ; Haffner, Christian ; Zwickel, Heiner ; Kieninger, Clemens ; Wolf, Stefan ; Lauermann, Matthias ; Fedoryshyn, Yuriy ; Tillack, Andreas F ; Johnson, Lewis E ; Elder, Delwin L ; Robinson, Bruce H ; Freude, Wolfgang ; Koos, Christian ; Leuthold, Juerg ; Dalton, Larry R</creatorcontrib><description>Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the sizes of electronic and photonic circuits; achieving low-loss transition between electronics, photonics, and plasmonics; and developing and integrating new materials. This review focuses on a hybrid material approach illustrating the importance of both chemical and engineering concepts. Silicon–organic hybrid (SOH) and plasmonic–organic hybrid (POH) technologies have permitted dramatic improvements in electro-optic (EO) performance relevant to both digital and analog signal processing. For example, the voltage–length product of devices has been reduced to less than 40 Vμm, facilitating device footprints of &lt;20 μm2 operating with digital voltage levels to frequencies above 170 GHz. Energy efficiency has been improved to around a femtojoule/bit. This improvement has been realized through exploitation of field enhancements permitted by new device architectures and through theory-guided improvements in organic electro-optic (OEO) materials. Multiscale theory efforts have permitted quantitative simulation of the dependence of OEO activity on chromophore structure and associated intermolecular interactions. This has led to new classes of OEO materials, including materials of reduced dimensionality and neat (pure) chromophore materials that can be electrically poled. Theoretical simulations have helped elucidate the observed dependence of device performance on nanoscopic waveguide dimensions, reflecting the importance of material interfaces. The demonstration and explanation of the dependence of in-device electro-optic activity, voltage–length product, and optical insertion loss on device architecture (e.g., slot width) suggest new paradigms for further dramatic improvement of performance.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.7b00224</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2017-07, Vol.4 (7), p.1576-1590</ispartof><rights>Copyright © 2017 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563</citedby><cites>FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563</cites><orcidid>0000-0003-0861-2530 ; 0000-0002-7412-073X ; 0000-0001-9302-3858 ; 0000-0002-6461-0145 ; 0000-0002-5579-953X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heni, Wolfgang</creatorcontrib><creatorcontrib>Kutuvantavida, Yasar</creatorcontrib><creatorcontrib>Haffner, Christian</creatorcontrib><creatorcontrib>Zwickel, Heiner</creatorcontrib><creatorcontrib>Kieninger, Clemens</creatorcontrib><creatorcontrib>Wolf, Stefan</creatorcontrib><creatorcontrib>Lauermann, Matthias</creatorcontrib><creatorcontrib>Fedoryshyn, Yuriy</creatorcontrib><creatorcontrib>Tillack, Andreas F</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Elder, Delwin L</creatorcontrib><creatorcontrib>Robinson, Bruce H</creatorcontrib><creatorcontrib>Freude, Wolfgang</creatorcontrib><creatorcontrib>Koos, Christian</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><creatorcontrib>Dalton, Larry R</creatorcontrib><title>Silicon–Organic and Plasmonic–Organic Hybrid Photonics</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the sizes of electronic and photonic circuits; achieving low-loss transition between electronics, photonics, and plasmonics; and developing and integrating new materials. This review focuses on a hybrid material approach illustrating the importance of both chemical and engineering concepts. Silicon–organic hybrid (SOH) and plasmonic–organic hybrid (POH) technologies have permitted dramatic improvements in electro-optic (EO) performance relevant to both digital and analog signal processing. For example, the voltage–length product of devices has been reduced to less than 40 Vμm, facilitating device footprints of &lt;20 μm2 operating with digital voltage levels to frequencies above 170 GHz. Energy efficiency has been improved to around a femtojoule/bit. This improvement has been realized through exploitation of field enhancements permitted by new device architectures and through theory-guided improvements in organic electro-optic (OEO) materials. Multiscale theory efforts have permitted quantitative simulation of the dependence of OEO activity on chromophore structure and associated intermolecular interactions. This has led to new classes of OEO materials, including materials of reduced dimensionality and neat (pure) chromophore materials that can be electrically poled. Theoretical simulations have helped elucidate the observed dependence of device performance on nanoscopic waveguide dimensions, reflecting the importance of material interfaces. The demonstration and explanation of the dependence of in-device electro-optic activity, voltage–length product, and optical insertion loss on device architecture (e.g., slot width) suggest new paradigms for further dramatic improvement of performance.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtKA0EQhhtRMMTcwEUuMLH6NdPjToIaIRBBXTfVj9EJk-nQHRfZeQdv6EnskAizclWPn--v4ifkmsKMAqM3aNP2I-xC39o0qwwAY-KMjBjnUIg8nA_6SzJJaQ0AFCQvSzEity9t19rQ_3x9r-I7ZpMp9m763GHaHCwH-8XexDZLf8euyEWDXfKTUx2Tt4f71_miWK4en-Z3ywK5VLuC1cCMdKjAyUYwwZShFffGusoJCbL2srFYolfgZU3ReeasUhWDWoGSJR8TcfS1MaQUfaO3sd1g3GsK-hCBHkagTxFkDI5YVvU6fMY-P_k_8gs112U4</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Heni, Wolfgang</creator><creator>Kutuvantavida, Yasar</creator><creator>Haffner, Christian</creator><creator>Zwickel, Heiner</creator><creator>Kieninger, Clemens</creator><creator>Wolf, Stefan</creator><creator>Lauermann, Matthias</creator><creator>Fedoryshyn, Yuriy</creator><creator>Tillack, Andreas F</creator><creator>Johnson, Lewis E</creator><creator>Elder, Delwin L</creator><creator>Robinson, Bruce H</creator><creator>Freude, Wolfgang</creator><creator>Koos, Christian</creator><creator>Leuthold, Juerg</creator><creator>Dalton, Larry R</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0861-2530</orcidid><orcidid>https://orcid.org/0000-0002-7412-073X</orcidid><orcidid>https://orcid.org/0000-0001-9302-3858</orcidid><orcidid>https://orcid.org/0000-0002-6461-0145</orcidid><orcidid>https://orcid.org/0000-0002-5579-953X</orcidid></search><sort><creationdate>20170719</creationdate><title>Silicon–Organic and Plasmonic–Organic Hybrid Photonics</title><author>Heni, Wolfgang ; Kutuvantavida, Yasar ; Haffner, Christian ; Zwickel, Heiner ; Kieninger, Clemens ; Wolf, Stefan ; Lauermann, Matthias ; Fedoryshyn, Yuriy ; Tillack, Andreas F ; Johnson, Lewis E ; Elder, Delwin L ; Robinson, Bruce H ; Freude, Wolfgang ; Koos, Christian ; Leuthold, Juerg ; Dalton, Larry R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Heni, Wolfgang</creatorcontrib><creatorcontrib>Kutuvantavida, Yasar</creatorcontrib><creatorcontrib>Haffner, Christian</creatorcontrib><creatorcontrib>Zwickel, Heiner</creatorcontrib><creatorcontrib>Kieninger, Clemens</creatorcontrib><creatorcontrib>Wolf, Stefan</creatorcontrib><creatorcontrib>Lauermann, Matthias</creatorcontrib><creatorcontrib>Fedoryshyn, Yuriy</creatorcontrib><creatorcontrib>Tillack, Andreas F</creatorcontrib><creatorcontrib>Johnson, Lewis E</creatorcontrib><creatorcontrib>Elder, Delwin L</creatorcontrib><creatorcontrib>Robinson, Bruce H</creatorcontrib><creatorcontrib>Freude, Wolfgang</creatorcontrib><creatorcontrib>Koos, Christian</creatorcontrib><creatorcontrib>Leuthold, Juerg</creatorcontrib><creatorcontrib>Dalton, Larry R</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heni, Wolfgang</au><au>Kutuvantavida, Yasar</au><au>Haffner, Christian</au><au>Zwickel, Heiner</au><au>Kieninger, Clemens</au><au>Wolf, Stefan</au><au>Lauermann, Matthias</au><au>Fedoryshyn, Yuriy</au><au>Tillack, Andreas F</au><au>Johnson, Lewis E</au><au>Elder, Delwin L</au><au>Robinson, Bruce H</au><au>Freude, Wolfgang</au><au>Koos, Christian</au><au>Leuthold, Juerg</au><au>Dalton, Larry R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon–Organic and Plasmonic–Organic Hybrid Photonics</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2017-07-19</date><risdate>2017</risdate><volume>4</volume><issue>7</issue><spage>1576</spage><epage>1590</epage><pages>1576-1590</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Chip-scale integration of electronics and photonics is recognized as important to the future of information technology, as is the exploitation of the best properties of electronics, photonics, and plasmonics to achieve this objective. However, significant challenges exist including matching the sizes of electronic and photonic circuits; achieving low-loss transition between electronics, photonics, and plasmonics; and developing and integrating new materials. This review focuses on a hybrid material approach illustrating the importance of both chemical and engineering concepts. Silicon–organic hybrid (SOH) and plasmonic–organic hybrid (POH) technologies have permitted dramatic improvements in electro-optic (EO) performance relevant to both digital and analog signal processing. For example, the voltage–length product of devices has been reduced to less than 40 Vμm, facilitating device footprints of &lt;20 μm2 operating with digital voltage levels to frequencies above 170 GHz. Energy efficiency has been improved to around a femtojoule/bit. This improvement has been realized through exploitation of field enhancements permitted by new device architectures and through theory-guided improvements in organic electro-optic (OEO) materials. Multiscale theory efforts have permitted quantitative simulation of the dependence of OEO activity on chromophore structure and associated intermolecular interactions. This has led to new classes of OEO materials, including materials of reduced dimensionality and neat (pure) chromophore materials that can be electrically poled. Theoretical simulations have helped elucidate the observed dependence of device performance on nanoscopic waveguide dimensions, reflecting the importance of material interfaces. The demonstration and explanation of the dependence of in-device electro-optic activity, voltage–length product, and optical insertion loss on device architecture (e.g., slot width) suggest new paradigms for further dramatic improvement of performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.7b00224</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0861-2530</orcidid><orcidid>https://orcid.org/0000-0002-7412-073X</orcidid><orcidid>https://orcid.org/0000-0001-9302-3858</orcidid><orcidid>https://orcid.org/0000-0002-6461-0145</orcidid><orcidid>https://orcid.org/0000-0002-5579-953X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2017-07, Vol.4 (7), p.1576-1590
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_7b00224
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Silicon–Organic and Plasmonic–Organic Hybrid Photonics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%E2%80%93Organic%20and%20Plasmonic%E2%80%93Organic%20Hybrid%20Photonics&rft.jtitle=ACS%20photonics&rft.au=Heni,%20Wolfgang&rft.date=2017-07-19&rft.volume=4&rft.issue=7&rft.spage=1576&rft.epage=1590&rft.pages=1576-1590&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.7b00224&rft_dat=%3Cacs_cross%3Ea333607503%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a358t-2902b5da80d5f42428b173ebcd7d45059e5fca6ae80e591ade2dc887209808563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true