Loadingā€¦

Understanding the Image Contrast of Material Boundaries in IR Nanoscopy Reaching 5 nm Spatial Resolution

Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale-resolved Infrared (IR) and Terahertz (THz) imaging, and thus has manifold applications ranging from materials to biosciences. However, a quantitatively accurate understanding of image contrast formation at materials...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2018-08, Vol.5 (8), p.3372-3378
Main Authors: Mastel, Stefan, Govyadinov, Alexander A, Maissen, Curdin, Chuvilin, Andrey, Berger, Andreas, Hillenbrand, Rainer
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Scattering-type scanning near-field optical microscopy (s-SNOM) allows for nanoscale-resolved Infrared (IR) and Terahertz (THz) imaging, and thus has manifold applications ranging from materials to biosciences. However, a quantitatively accurate understanding of image contrast formation at materials boundaries, and thus spatial resolution is a surprisingly unexplored terrain. Here we introduce theĀ read/write head of a commercial hard disk drive (HDD) as a most suitable test sample for fundamental studies, given its well-defined sharp material boundaries perpendicular to its ultrasmooth surface. We obtain unprecedented and unexpected insights into the s-SNOM image formation process, free of topography-induced contrasts that often mask and artificially modify the pure near-field optical contrast. Across metal-dielectric boundaries, we observe non-point-symmetric line profiles for both IR and THz illumination, which are fully corroborated by numerical simulations. We explain our findings by a sample-dependent confinement and screening of the near fields at the tip apex, which will be of crucial importance for an accurate understanding and proper interpretation of high-resolution s-SNOM images of nanocomposite materials. We also demonstrate that with ultrasharp tungsten tips the apparent width (resolution) of sharp material boundaries can be reduced to about 5 nm.
ISSN:2330-4022
2330-4022
DOI:10.1021/acsphotonics.8b00636