Loading…

Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices

Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons b...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2019-08, Vol.6 (8), p.1963-1971
Main Authors: Muziol, Grzegorz, Turski, Henryk, Siekacz, Marcin, Szkudlarek, Krzesimir, Janicki, Lukasz, Baranowski, Michal, Zolud, Sebastian, Kudrawiec, Robert, Suski, Tadeusz, Skierbiszewski, Czeslaw
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3
cites cdi_FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3
container_end_page 1971
container_issue 8
container_start_page 1963
container_title ACS photonics
container_volume 6
creator Muziol, Grzegorz
Turski, Henryk
Siekacz, Marcin
Szkudlarek, Krzesimir
Janicki, Lukasz
Baranowski, Michal
Zolud, Sebastian
Kudrawiec, Robert
Suski, Tadeusz
Skierbiszewski, Czeslaw
description Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.
doi_str_mv 10.1021/acsphotonics.9b00327
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_9b00327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b948600668</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiQT5Bx76Bxb7sWx3j4ooJiRgoudN6U5hCNuStpjAr3cFDpw8zUzePG8mDyGPnA05E_xJm7hb--QdmjisloxJoW5IT0jJspwJcXu135NBjBvGGGcjWRR5j_gXOHjX0M-9dmnf0om1aBCcOdAZtph0Qu8inQdcoesOt6I2-JamNdAFwtHDFkwKaOjCb3XA4wmg6Dp8tU7ZpOs4Ua_wgwbiA7mzehthcJl98v02-RpPs9n8_WP8PMu0qETKGlMpU2il1EgvGSiZGyhUo2VZylI3HExjy0obbUecAy8s8JJzk9uyaJRQS9kn-bnXBB9jAFvvArY6HGrO6j9v9bW3-uKtw9gZ69J64_fBdU_-j_wCnlh4rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Muziol, Grzegorz ; Turski, Henryk ; Siekacz, Marcin ; Szkudlarek, Krzesimir ; Janicki, Lukasz ; Baranowski, Michal ; Zolud, Sebastian ; Kudrawiec, Robert ; Suski, Tadeusz ; Skierbiszewski, Czeslaw</creator><creatorcontrib>Muziol, Grzegorz ; Turski, Henryk ; Siekacz, Marcin ; Szkudlarek, Krzesimir ; Janicki, Lukasz ; Baranowski, Michal ; Zolud, Sebastian ; Kudrawiec, Robert ; Suski, Tadeusz ; Skierbiszewski, Czeslaw</creatorcontrib><description>Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b00327</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2019-08, Vol.6 (8), p.1963-1971</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3</citedby><cites>FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3</cites><orcidid>0000-0002-5974-0850 ; 0000-0002-1054-6643 ; 0000-0001-7430-3838 ; 0000-0003-2593-9172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Muziol, Grzegorz</creatorcontrib><creatorcontrib>Turski, Henryk</creatorcontrib><creatorcontrib>Siekacz, Marcin</creatorcontrib><creatorcontrib>Szkudlarek, Krzesimir</creatorcontrib><creatorcontrib>Janicki, Lukasz</creatorcontrib><creatorcontrib>Baranowski, Michal</creatorcontrib><creatorcontrib>Zolud, Sebastian</creatorcontrib><creatorcontrib>Kudrawiec, Robert</creatorcontrib><creatorcontrib>Suski, Tadeusz</creatorcontrib><creatorcontrib>Skierbiszewski, Czeslaw</creatorcontrib><title>Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiQT5Bx76Bxb7sWx3j4ooJiRgoudN6U5hCNuStpjAr3cFDpw8zUzePG8mDyGPnA05E_xJm7hb--QdmjisloxJoW5IT0jJspwJcXu135NBjBvGGGcjWRR5j_gXOHjX0M-9dmnf0om1aBCcOdAZtph0Qu8inQdcoesOt6I2-JamNdAFwtHDFkwKaOjCb3XA4wmg6Dp8tU7ZpOs4Ua_wgwbiA7mzehthcJl98v02-RpPs9n8_WP8PMu0qETKGlMpU2il1EgvGSiZGyhUo2VZylI3HExjy0obbUecAy8s8JJzk9uyaJRQS9kn-bnXBB9jAFvvArY6HGrO6j9v9bW3-uKtw9gZ69J64_fBdU_-j_wCnlh4rw</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Muziol, Grzegorz</creator><creator>Turski, Henryk</creator><creator>Siekacz, Marcin</creator><creator>Szkudlarek, Krzesimir</creator><creator>Janicki, Lukasz</creator><creator>Baranowski, Michal</creator><creator>Zolud, Sebastian</creator><creator>Kudrawiec, Robert</creator><creator>Suski, Tadeusz</creator><creator>Skierbiszewski, Czeslaw</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5974-0850</orcidid><orcidid>https://orcid.org/0000-0002-1054-6643</orcidid><orcidid>https://orcid.org/0000-0001-7430-3838</orcidid><orcidid>https://orcid.org/0000-0003-2593-9172</orcidid></search><sort><creationdate>20190821</creationdate><title>Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices</title><author>Muziol, Grzegorz ; Turski, Henryk ; Siekacz, Marcin ; Szkudlarek, Krzesimir ; Janicki, Lukasz ; Baranowski, Michal ; Zolud, Sebastian ; Kudrawiec, Robert ; Suski, Tadeusz ; Skierbiszewski, Czeslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Muziol, Grzegorz</creatorcontrib><creatorcontrib>Turski, Henryk</creatorcontrib><creatorcontrib>Siekacz, Marcin</creatorcontrib><creatorcontrib>Szkudlarek, Krzesimir</creatorcontrib><creatorcontrib>Janicki, Lukasz</creatorcontrib><creatorcontrib>Baranowski, Michal</creatorcontrib><creatorcontrib>Zolud, Sebastian</creatorcontrib><creatorcontrib>Kudrawiec, Robert</creatorcontrib><creatorcontrib>Suski, Tadeusz</creatorcontrib><creatorcontrib>Skierbiszewski, Czeslaw</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muziol, Grzegorz</au><au>Turski, Henryk</au><au>Siekacz, Marcin</au><au>Szkudlarek, Krzesimir</au><au>Janicki, Lukasz</au><au>Baranowski, Michal</au><au>Zolud, Sebastian</au><au>Kudrawiec, Robert</au><au>Suski, Tadeusz</au><au>Skierbiszewski, Czeslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>6</volume><issue>8</issue><spage>1963</spage><epage>1971</epage><pages>1963-1971</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>Blue and violet light-emitting devices based on III-nitrides caused an ongoing revolution in general lighting. One of the highly deliberated discussions in this field is devoted to the problem called the “green gap”, which is a lack of efficient emitters in this spectral regime. One of the reasons behind the insufficient internal quantum efficiency (IQE) of green III-nitride devices is related to the quantum confined Stark effect. In this paper we present a counterintuitive feature of quantum well systems with a large built-in electric field that leads to a huge enhancement in IQE. We show, by means of numerical simulations, that an increase in the InGaN quantum well thickness initially leads to a decrease in the oscillator strength; however, after a certain critical thickness is reached, a highly efficient recombination path appears via excited states. A peculiar quantum well system with a zero-probability transition between the ground states and an extremely high one through the excited states is demonstrated. Remarkably, the oscillator strength in a wide QW is higher than in conventionally used QWs with thicknesses lower than 5 nm. Experimental evidence is provided showing a change in the nature of the optical transition with increasing thickness of the QW. Furthermore, we show that, counterintuitively, the devices with higher In content exhibit a higher enhancement in IQE, which might solve some problems related to the “green gap”. The predictions shown in this paper are valid for all semiconductor systems exhibiting large piezoelectric polarization such as III-nitrides, II-oxides, and II-sulfides.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b00327</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5974-0850</orcidid><orcidid>https://orcid.org/0000-0002-1054-6643</orcidid><orcidid>https://orcid.org/0000-0001-7430-3838</orcidid><orcidid>https://orcid.org/0000-0003-2593-9172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2019-08, Vol.6 (8), p.1963-1971
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_9b00327
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beyond%20Quantum%20Efficiency%20Limitations%20Originating%20from%20the%20Piezoelectric%20Polarization%20in%20Light-Emitting%20Devices&rft.jtitle=ACS%20photonics&rft.au=Muziol,%20Grzegorz&rft.date=2019-08-21&rft.volume=6&rft.issue=8&rft.spage=1963&rft.epage=1971&rft.pages=1963-1971&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b00327&rft_dat=%3Cacs_cross%3Eb948600668%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-dc97c6a7775ab0e734ce67da38838ad1ecdf89acaf511e16fe1811c4f86d727b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true