Loading…
AlGaN Deep-Ultraviolet Light-Emitting Diodes Grown on SiC Substrates
The disinfection industry would greatly benefit from efficient, robust, high-power deep-ultraviolet light-emitting diodes (UV–C LEDs). However, the performance of UV–C AlGaN LEDs is limited by poor light-extraction efficiency (LEE) and the presence of a large density of threading dislocations. We de...
Saved in:
Published in: | ACS photonics 2020-03, Vol.7 (3), p.554-561 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The disinfection industry would greatly benefit from efficient, robust, high-power deep-ultraviolet light-emitting diodes (UV–C LEDs). However, the performance of UV–C AlGaN LEDs is limited by poor light-extraction efficiency (LEE) and the presence of a large density of threading dislocations. We demonstrate high power AlGaN LEDs grown on SiC with high LEE and low threading dislocation density. We employ a crack-free AlN buffer layer with low threading dislocation density and a technique to fabricate thin-film UV LEDs by removing the SiC substrate, with a highly selective SF6 etch. The LEDs (278 nm) have a turn-on voltage of 4.3 V and a CW power of 8 mW (82 mW/mm2) and external quantum efficiency (EQE) of 1.8% at 95 mA. KOH submicron roughening of the AlN surface (nitrogen-polar) and improved p-contact reflectivity are found to be effective in improving the LEE of UV light. We estimate the improved LEE by semiempirical calculations to be 33% (without encapsulation). This work establishes UV LEDs grown on SiC substrates as a viable architecture to large-area, high-brightness, and high-power UV LEDs. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.9b00600 |