Loading…
Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity
In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room t...
Saved in:
Published in: | ACS photonics 2020-02, Vol.7 (2), p.472-479 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63 |
---|---|
cites | cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63 |
container_end_page | 479 |
container_issue | 2 |
container_start_page | 472 |
container_title | ACS photonics |
container_volume | 7 |
creator | Chaudhuri, Krishnakali Guler, Urcan Azzam, Shaimaa I Reddy, Harsha Saha, Soham Marinero, Ernesto E Kildishev, Alexander V Shalaev, Vladimir M Boltasseva, Alexandra |
description | In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments. |
doi_str_mv | 10.1021/acsphotonics.9b01450 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_9b01450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a111222006</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</originalsourceid><addsrcrecordid>eNp9kM9OAjEQhxujiQR5Aw99ABen7ba7ezT4BxMMCaLXTbdMoQS2m7ZoeHvXwMGTp5n5Tb7J5CPklsGYAWf32sRu45NvnYnjqgGWS7ggAy4EZDlwfvmnvyajGLcAwEAKpfIB-Vzg3iek79hG166pt3Tq1hu6xH2HQadDwEi_XdrQBdqgTfLheEcfXUCTsolvUx_ReZec0Tv6hv2ov1w63pArq3cRR-c6JB_PT8vJNJvNX14nD7NM84qnrKxUIRQUhksJjbVotGBMotVqJZUqqoapJueWrUpVSlkZa0VpuLEFFlI2SgxJfrprgo8xoK274PY6HGsG9a-e-q-e-qynx-CE9dt66w-h7Z_8H_kBclFtvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</creator><creatorcontrib>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</creatorcontrib><description>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01450</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2020-02, Vol.7 (2), p.472-479</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</citedby><cites>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</cites><orcidid>0000-0002-5988-7625 ; 0000-0002-4319-3813 ; 0000-0003-3292-2221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaudhuri, Krishnakali</creatorcontrib><creatorcontrib>Guler, Urcan</creatorcontrib><creatorcontrib>Azzam, Shaimaa I</creatorcontrib><creatorcontrib>Reddy, Harsha</creatorcontrib><creatorcontrib>Saha, Soham</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQhxujiQR5Aw99ABen7ba7ezT4BxMMCaLXTbdMoQS2m7ZoeHvXwMGTp5n5Tb7J5CPklsGYAWf32sRu45NvnYnjqgGWS7ggAy4EZDlwfvmnvyajGLcAwEAKpfIB-Vzg3iek79hG166pt3Tq1hu6xH2HQadDwEi_XdrQBdqgTfLheEcfXUCTsolvUx_ReZec0Tv6hv2ov1w63pArq3cRR-c6JB_PT8vJNJvNX14nD7NM84qnrKxUIRQUhksJjbVotGBMotVqJZUqqoapJueWrUpVSlkZa0VpuLEFFlI2SgxJfrprgo8xoK274PY6HGsG9a-e-q-e-qynx-CE9dt66w-h7Z_8H_kBclFtvQ</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Chaudhuri, Krishnakali</creator><creator>Guler, Urcan</creator><creator>Azzam, Shaimaa I</creator><creator>Reddy, Harsha</creator><creator>Saha, Soham</creator><creator>Marinero, Ernesto E</creator><creator>Kildishev, Alexander V</creator><creator>Shalaev, Vladimir M</creator><creator>Boltasseva, Alexandra</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5988-7625</orcidid><orcidid>https://orcid.org/0000-0002-4319-3813</orcidid><orcidid>https://orcid.org/0000-0003-3292-2221</orcidid></search><sort><creationdate>20200219</creationdate><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><author>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Krishnakali</creatorcontrib><creatorcontrib>Guler, Urcan</creatorcontrib><creatorcontrib>Azzam, Shaimaa I</creatorcontrib><creatorcontrib>Reddy, Harsha</creatorcontrib><creatorcontrib>Saha, Soham</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Krishnakali</au><au>Guler, Urcan</au><au>Azzam, Shaimaa I</au><au>Reddy, Harsha</au><au>Saha, Soham</au><au>Marinero, Ernesto E</au><au>Kildishev, Alexander V</au><au>Shalaev, Vladimir M</au><au>Boltasseva, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>472</spage><epage>479</epage><pages>472-479</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01450</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5988-7625</orcidid><orcidid>https://orcid.org/0000-0002-4319-3813</orcidid><orcidid>https://orcid.org/0000-0003-3292-2221</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2020-02, Vol.7 (2), p.472-479 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acsphotonics_9b01450 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Sensing%20of%20High%20Temperatures%20with%20Refractory,%20Direct-Contact%20Optical%20Metacavity&rft.jtitle=ACS%20photonics&rft.au=Chaudhuri,%20Krishnakali&rft.date=2020-02-19&rft.volume=7&rft.issue=2&rft.spage=472&rft.epage=479&rft.pages=472-479&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01450&rft_dat=%3Cacs_cross%3Ea111222006%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |