Loading…

Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity

In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room t...

Full description

Saved in:
Bibliographic Details
Published in:ACS photonics 2020-02, Vol.7 (2), p.472-479
Main Authors: Chaudhuri, Krishnakali, Guler, Urcan, Azzam, Shaimaa I, Reddy, Harsha, Saha, Soham, Marinero, Ernesto E, Kildishev, Alexander V, Shalaev, Vladimir M, Boltasseva, Alexandra
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63
cites cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63
container_end_page 479
container_issue 2
container_start_page 472
container_title ACS photonics
container_volume 7
creator Chaudhuri, Krishnakali
Guler, Urcan
Azzam, Shaimaa I
Reddy, Harsha
Saha, Soham
Marinero, Ernesto E
Kildishev, Alexander V
Shalaev, Vladimir M
Boltasseva, Alexandra
description In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.
doi_str_mv 10.1021/acsphotonics.9b01450
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acsphotonics_9b01450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a111222006</sourcerecordid><originalsourceid>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</originalsourceid><addsrcrecordid>eNp9kM9OAjEQhxujiQR5Aw99ABen7ba7ezT4BxMMCaLXTbdMoQS2m7ZoeHvXwMGTp5n5Tb7J5CPklsGYAWf32sRu45NvnYnjqgGWS7ggAy4EZDlwfvmnvyajGLcAwEAKpfIB-Vzg3iek79hG166pt3Tq1hu6xH2HQadDwEi_XdrQBdqgTfLheEcfXUCTsolvUx_ReZec0Tv6hv2ov1w63pArq3cRR-c6JB_PT8vJNJvNX14nD7NM84qnrKxUIRQUhksJjbVotGBMotVqJZUqqoapJueWrUpVSlkZa0VpuLEFFlI2SgxJfrprgo8xoK274PY6HGsG9a-e-q-e-qynx-CE9dt66w-h7Z_8H_kBclFtvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</creator><creatorcontrib>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</creatorcontrib><description>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b01450</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS photonics, 2020-02, Vol.7 (2), p.472-479</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</citedby><cites>FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</cites><orcidid>0000-0002-5988-7625 ; 0000-0002-4319-3813 ; 0000-0003-3292-2221</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chaudhuri, Krishnakali</creatorcontrib><creatorcontrib>Guler, Urcan</creatorcontrib><creatorcontrib>Azzam, Shaimaa I</creatorcontrib><creatorcontrib>Reddy, Harsha</creatorcontrib><creatorcontrib>Saha, Soham</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</description><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAjEQhxujiQR5Aw99ABen7ba7ezT4BxMMCaLXTbdMoQS2m7ZoeHvXwMGTp5n5Tb7J5CPklsGYAWf32sRu45NvnYnjqgGWS7ggAy4EZDlwfvmnvyajGLcAwEAKpfIB-Vzg3iek79hG166pt3Tq1hu6xH2HQadDwEi_XdrQBdqgTfLheEcfXUCTsolvUx_ReZec0Tv6hv2ov1w63pArq3cRR-c6JB_PT8vJNJvNX14nD7NM84qnrKxUIRQUhksJjbVotGBMotVqJZUqqoapJueWrUpVSlkZa0VpuLEFFlI2SgxJfrprgo8xoK274PY6HGsG9a-e-q-e-qynx-CE9dt66w-h7Z_8H_kBclFtvQ</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Chaudhuri, Krishnakali</creator><creator>Guler, Urcan</creator><creator>Azzam, Shaimaa I</creator><creator>Reddy, Harsha</creator><creator>Saha, Soham</creator><creator>Marinero, Ernesto E</creator><creator>Kildishev, Alexander V</creator><creator>Shalaev, Vladimir M</creator><creator>Boltasseva, Alexandra</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5988-7625</orcidid><orcidid>https://orcid.org/0000-0002-4319-3813</orcidid><orcidid>https://orcid.org/0000-0003-3292-2221</orcidid></search><sort><creationdate>20200219</creationdate><title>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</title><author>Chaudhuri, Krishnakali ; Guler, Urcan ; Azzam, Shaimaa I ; Reddy, Harsha ; Saha, Soham ; Marinero, Ernesto E ; Kildishev, Alexander V ; Shalaev, Vladimir M ; Boltasseva, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Krishnakali</creatorcontrib><creatorcontrib>Guler, Urcan</creatorcontrib><creatorcontrib>Azzam, Shaimaa I</creatorcontrib><creatorcontrib>Reddy, Harsha</creatorcontrib><creatorcontrib>Saha, Soham</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Kildishev, Alexander V</creatorcontrib><creatorcontrib>Shalaev, Vladimir M</creatorcontrib><creatorcontrib>Boltasseva, Alexandra</creatorcontrib><collection>CrossRef</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Krishnakali</au><au>Guler, Urcan</au><au>Azzam, Shaimaa I</au><au>Reddy, Harsha</au><au>Saha, Soham</au><au>Marinero, Ernesto E</au><au>Kildishev, Alexander V</au><au>Shalaev, Vladimir M</au><au>Boltasseva, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>7</volume><issue>2</issue><spage>472</spage><epage>479</epage><pages>472-479</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>In this work, temperature-dependent optical properties of refractory plasmonic transition metal nitrides and dielectric thin films are utilized to design and realize a planar, direct-contact, nanophotonic metacavity for remote, all-optical sensing of a wide range of surface temperatures (from room temperature to above 1000 °C). The proposed hybrid metacavity device integrates the plasmonic cavity with a planar metasurface that utilizes refractory material components, namely, titanium nitride (TiN) and silicon nitride (Si3N4), and operates in a spectral wavelength window of 900–1400 nm. The unique feature of this approach is that metacativy is located directly on the hot surface, while other components are kept remote. The thermally variant optical properties of the constituent materials (TiN, Si3N4) enable metacavity operation with a strong polarization-dependent resonant reflectance response. At the cavity resonance, relative amplitude variations of above 30% are detected in the temperature-dependent reflectance spectra that act as the read-out from the experimentally demonstrated sensor. The proposed high-efficiency, planar optical refractory sensor located directly on hot surfaces also allows for great scalability. The device enables true remote all-optical measurements by keeping other ancillary systems outside of the hot ambient conditions and, therefore, is especially relevant for applications in harsh environments.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b01450</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5988-7625</orcidid><orcidid>https://orcid.org/0000-0002-4319-3813</orcidid><orcidid>https://orcid.org/0000-0003-3292-2221</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2020-02, Vol.7 (2), p.472-479
issn 2330-4022
2330-4022
language eng
recordid cdi_crossref_primary_10_1021_acsphotonics_9b01450
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Remote Sensing of High Temperatures with Refractory, Direct-Contact Optical Metacavity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Sensing%20of%20High%20Temperatures%20with%20Refractory,%20Direct-Contact%20Optical%20Metacavity&rft.jtitle=ACS%20photonics&rft.au=Chaudhuri,%20Krishnakali&rft.date=2020-02-19&rft.volume=7&rft.issue=2&rft.spage=472&rft.epage=479&rft.pages=472-479&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b01450&rft_dat=%3Cacs_cross%3Ea111222006%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a292t-89673607c2550bffeca3115efa6d56679b16b42f1d868559cff38c2cf7e755b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true