Loading…

Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated el...

Full description

Saved in:
Bibliographic Details
Published in:ACS sensors 2024-05, Vol.9 (5), p.2653-2661
Main Authors: Li, Zhiwei, He, Yahua, Huang, Jiawei, Zhu, Zhan, Yang, Yang, Jiang, Lei, Yang, Shulin, Wang, Zhao, Fei, Linfeng, Gu, Haoshuang, Wang, John
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673
container_end_page 2661
container_issue 5
container_start_page 2653
container_title ACS sensors
container_volume 9
creator Li, Zhiwei
He, Yahua
Huang, Jiawei
Zhu, Zhan
Yang, Yang
Jiang, Lei
Yang, Shulin
Wang, Zhao
Fei, Linfeng
Gu, Haoshuang
Wang, John
description Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm V s . Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO . The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.
doi_str_mv 10.1021/acssensors.4c00508
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_4c00508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38710540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qVUGUH-ii8g-kHduJnSwp5VEJlUXoOnJsB1wFB9mhiH0_vEHQx2pGo3tGMwehewKPBCh5kioE40Ljw2OsABJIr1CfMpFFjGfx9b--h4YhfAAASThNUrhFPZYKAkkMffT1Xrdethvr8HOzd1r6Y7QwIeDcLTHFU1tvAz7YdoPzva-kMtFItfZTtkbj1aGJXuy2u8I2Ttb4Tbpm7aV1AU-cLGuDpzK0WDqN81Oo4wyeH7Vv1sbhmQznsVvfoZtK1sEML3WA8ulkNZ5Hi-XsdTxaRIpziJjhgplSG5ZWWQZZTEuuqMo4gBBCUyEV0aSqZAw0rQQHoksqheaUxKxDB4ietyrfhOBNVey83XYPFwSKk9Piz2lxcdpBD2doty-3Rv8iPwbZN8_3dpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</creator><creatorcontrib>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</creatorcontrib><description>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm V s . Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO . The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.4c00508</identifier><identifier>PMID: 38710540</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS sensors, 2024-05, Vol.9 (5), p.2653-2661</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</cites><orcidid>0000-0003-0147-6054 ; 0000-0001-6059-8962 ; 0000-0003-1232-2499 ; 0000-0001-7329-0019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38710540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>He, Yahua</creatorcontrib><creatorcontrib>Huang, Jiawei</creatorcontrib><creatorcontrib>Zhu, Zhan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Yang, Shulin</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Gu, Haoshuang</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm V s . Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO . The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtuwjAQRa2qVUGUH-ii8g-kHduJnSwp5VEJlUXoOnJsB1wFB9mhiH0_vEHQx2pGo3tGMwehewKPBCh5kioE40Ljw2OsABJIr1CfMpFFjGfx9b--h4YhfAAASThNUrhFPZYKAkkMffT1Xrdethvr8HOzd1r6Y7QwIeDcLTHFU1tvAz7YdoPzva-kMtFItfZTtkbj1aGJXuy2u8I2Ttb4Tbpm7aV1AU-cLGuDpzK0WDqN81Oo4wyeH7Vv1sbhmQznsVvfoZtK1sEML3WA8ulkNZ5Hi-XsdTxaRIpziJjhgplSG5ZWWQZZTEuuqMo4gBBCUyEV0aSqZAw0rQQHoksqheaUxKxDB4ietyrfhOBNVey83XYPFwSKk9Piz2lxcdpBD2doty-3Rv8iPwbZN8_3dpo</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Li, Zhiwei</creator><creator>He, Yahua</creator><creator>Huang, Jiawei</creator><creator>Zhu, Zhan</creator><creator>Yang, Yang</creator><creator>Jiang, Lei</creator><creator>Yang, Shulin</creator><creator>Wang, Zhao</creator><creator>Fei, Linfeng</creator><creator>Gu, Haoshuang</creator><creator>Wang, John</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0147-6054</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-1232-2499</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid></search><sort><creationdate>20240524</creationdate><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><author>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>He, Yahua</creatorcontrib><creatorcontrib>Huang, Jiawei</creatorcontrib><creatorcontrib>Zhu, Zhan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Yang, Shulin</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Gu, Haoshuang</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiwei</au><au>He, Yahua</au><au>Huang, Jiawei</au><au>Zhu, Zhan</au><au>Yang, Yang</au><au>Jiang, Lei</au><au>Yang, Shulin</au><au>Wang, Zhao</au><au>Fei, Linfeng</au><au>Gu, Haoshuang</au><au>Wang, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-05-24</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>2653</spage><epage>2661</epage><pages>2653-2661</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm V s . Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO . The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</abstract><cop>United States</cop><pmid>38710540</pmid><doi>10.1021/acssensors.4c00508</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0147-6054</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-1232-2499</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2024-05, Vol.9 (5), p.2653-2661
issn 2379-3694
2379-3694
language eng
recordid cdi_crossref_primary_10_1021_acssensors_4c00508
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Boundary-Less%20SnO%202%20Films%20with%20Surface-Activated%20Two-Dimensional%20Nanograins%20Enable%20Fast%20and%20Sensitive%20Hydrogen%20Gas%20Sensing&rft.jtitle=ACS%20sensors&rft.au=Li,%20Zhiwei&rft.date=2024-05-24&rft.volume=9&rft.issue=5&rft.spage=2653&rft.epage=2661&rft.pages=2653-2661&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.4c00508&rft_dat=%3Cpubmed_cross%3E38710540%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38710540&rfr_iscdi=true