Loading…
Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing
Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated el...
Saved in:
Published in: | ACS sensors 2024-05, Vol.9 (5), p.2653-2661 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673 |
container_end_page | 2661 |
container_issue | 5 |
container_start_page | 2653 |
container_title | ACS sensors |
container_volume | 9 |
creator | Li, Zhiwei He, Yahua Huang, Jiawei Zhu, Zhan Yang, Yang Jiang, Lei Yang, Shulin Wang, Zhao Fei, Linfeng Gu, Haoshuang Wang, John |
description | Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO
films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO
films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm
V
s
. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO
. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO
films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries. |
doi_str_mv | 10.1021/acssensors.4c00508 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssensors_4c00508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38710540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</originalsourceid><addsrcrecordid>eNpNkMtuwjAQRa2qVUGUH-ii8g-kHduJnSwp5VEJlUXoOnJsB1wFB9mhiH0_vEHQx2pGo3tGMwehewKPBCh5kioE40Ljw2OsABJIr1CfMpFFjGfx9b--h4YhfAAASThNUrhFPZYKAkkMffT1Xrdethvr8HOzd1r6Y7QwIeDcLTHFU1tvAz7YdoPzva-kMtFItfZTtkbj1aGJXuy2u8I2Ttb4Tbpm7aV1AU-cLGuDpzK0WDqN81Oo4wyeH7Vv1sbhmQznsVvfoZtK1sEML3WA8ulkNZ5Hi-XsdTxaRIpziJjhgplSG5ZWWQZZTEuuqMo4gBBCUyEV0aSqZAw0rQQHoksqheaUxKxDB4ietyrfhOBNVey83XYPFwSKk9Piz2lxcdpBD2doty-3Rv8iPwbZN8_3dpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</creator><creatorcontrib>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</creatorcontrib><description>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO
films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO
films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm
V
s
. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO
. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO
films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.4c00508</identifier><identifier>PMID: 38710540</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS sensors, 2024-05, Vol.9 (5), p.2653-2661</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</cites><orcidid>0000-0003-0147-6054 ; 0000-0001-6059-8962 ; 0000-0003-1232-2499 ; 0000-0001-7329-0019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38710540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>He, Yahua</creatorcontrib><creatorcontrib>Huang, Jiawei</creatorcontrib><creatorcontrib>Zhu, Zhan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Yang, Shulin</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Gu, Haoshuang</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO
films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO
films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm
V
s
. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO
. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO
films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtuwjAQRa2qVUGUH-ii8g-kHduJnSwp5VEJlUXoOnJsB1wFB9mhiH0_vEHQx2pGo3tGMwehewKPBCh5kioE40Ljw2OsABJIr1CfMpFFjGfx9b--h4YhfAAASThNUrhFPZYKAkkMffT1Xrdethvr8HOzd1r6Y7QwIeDcLTHFU1tvAz7YdoPzva-kMtFItfZTtkbj1aGJXuy2u8I2Ttb4Tbpm7aV1AU-cLGuDpzK0WDqN81Oo4wyeH7Vv1sbhmQznsVvfoZtK1sEML3WA8ulkNZ5Hi-XsdTxaRIpziJjhgplSG5ZWWQZZTEuuqMo4gBBCUyEV0aSqZAw0rQQHoksqheaUxKxDB4ietyrfhOBNVey83XYPFwSKk9Piz2lxcdpBD2doty-3Rv8iPwbZN8_3dpo</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Li, Zhiwei</creator><creator>He, Yahua</creator><creator>Huang, Jiawei</creator><creator>Zhu, Zhan</creator><creator>Yang, Yang</creator><creator>Jiang, Lei</creator><creator>Yang, Shulin</creator><creator>Wang, Zhao</creator><creator>Fei, Linfeng</creator><creator>Gu, Haoshuang</creator><creator>Wang, John</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0147-6054</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-1232-2499</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid></search><sort><creationdate>20240524</creationdate><title>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</title><author>Li, Zhiwei ; He, Yahua ; Huang, Jiawei ; Zhu, Zhan ; Yang, Yang ; Jiang, Lei ; Yang, Shulin ; Wang, Zhao ; Fei, Linfeng ; Gu, Haoshuang ; Wang, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiwei</creatorcontrib><creatorcontrib>He, Yahua</creatorcontrib><creatorcontrib>Huang, Jiawei</creatorcontrib><creatorcontrib>Zhu, Zhan</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Jiang, Lei</creatorcontrib><creatorcontrib>Yang, Shulin</creatorcontrib><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Fei, Linfeng</creatorcontrib><creatorcontrib>Gu, Haoshuang</creatorcontrib><creatorcontrib>Wang, John</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiwei</au><au>He, Yahua</au><au>Huang, Jiawei</au><au>Zhu, Zhan</au><au>Yang, Yang</au><au>Jiang, Lei</au><au>Yang, Shulin</au><au>Wang, Zhao</au><au>Fei, Linfeng</au><au>Gu, Haoshuang</au><au>Wang, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-05-24</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>2653</spage><epage>2661</epage><pages>2653-2661</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO
films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO
films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm
V
s
. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO
. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO
films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.</abstract><cop>United States</cop><pmid>38710540</pmid><doi>10.1021/acssensors.4c00508</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0147-6054</orcidid><orcidid>https://orcid.org/0000-0001-6059-8962</orcidid><orcidid>https://orcid.org/0000-0003-1232-2499</orcidid><orcidid>https://orcid.org/0000-0001-7329-0019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-3694 |
ispartof | ACS sensors, 2024-05, Vol.9 (5), p.2653-2661 |
issn | 2379-3694 2379-3694 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssensors_4c00508 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Ultrathin Boundary-Less SnO 2 Films with Surface-Activated Two-Dimensional Nanograins Enable Fast and Sensitive Hydrogen Gas Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrathin%20Boundary-Less%20SnO%202%20Films%20with%20Surface-Activated%20Two-Dimensional%20Nanograins%20Enable%20Fast%20and%20Sensitive%20Hydrogen%20Gas%20Sensing&rft.jtitle=ACS%20sensors&rft.au=Li,%20Zhiwei&rft.date=2024-05-24&rft.volume=9&rft.issue=5&rft.spage=2653&rft.epage=2661&rft.pages=2653-2661&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.4c00508&rft_dat=%3Cpubmed_cross%3E38710540%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c660-3e673ebde38f990942b6c2c9600777d27ac1d1ffa4028f7601db2a7d62143673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/38710540&rfr_iscdi=true |