Loading…

High-Strength, Multifunctional, and Long Nanocellulose Hybrid Fibers Coated with Esterified Poly(vinyl alcohol)–Citric Acid–Lignin Resin

In natural fiber-reinforced polymer composites, strong and tough nanocellulose long fibers (NCLFs) are in high demand. Despite the availability of diverse cellulose nanofiber (CNF) preparations, efficient production of continuous high-strength NCLFs remains a challenge. This study reports a synergis...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2022-08, Vol.10 (30), p.10024-10033
Main Authors: Panicker, Pooja S., Agumba, Dickens O., Kim, Jaehwan
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In natural fiber-reinforced polymer composites, strong and tough nanocellulose long fibers (NCLFs) are in high demand. Despite the availability of diverse cellulose nanofiber (CNF) preparations, efficient production of continuous high-strength NCLFs remains a challenge. This study reports a synergistic approach that entails wet spinning and coating CNF with a bio-based and hydrogen-bonded polyvinyl alcohol–citric acid–lignin (H-PCL) resin followed by esterification at 180 °C to form esterified poly­(vinyl alcohol)–citric acid–lignin (E-PCL)–NCLF. Morphology assessments on the cross-sectional images of E-PCL-NCLF by scanning electron microscopy revealed a homogeneous coating of H-PCL resin with an average coating thickness of 0.8 μm. The prepared fiber showed a dramatic increase in the mechanical properties with a Young’s modulus of 31.20 GPa (49% increase), a tensile strength of 684.61 MPa (138% increase), and a toughness of 12.90 MJ/m3 (10% increase) with a strain at break of 3.26%. The reported approach imparted multifunctional characteristics in the prepared EPCL-NCLF regarding high hydrophobicity, antioxidant activity, and thermal stability. These remarkable enhancements make the prepared EPCL-NCLF a promising candidate for all-green natural fiber-reinforced polymer composites.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.2c02785