Loading…
Glycerol-Derived Solvents for Tractable Organosolv Extraction of Softwood Lignins
In the present study, glycerol-derived ethers (GDEs) are evaluated as green solvents to facilitate organosolv extraction of lignins from softwood biomass. GDEs assessed in the present investigation consist of glycerol skeletons etherified with alkyl constituents (e.g., methyl, ethyl), including 1,3-...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2024-10, Vol.12 (41), p.15089-15102 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, glycerol-derived ethers (GDEs) are evaluated as green solvents to facilitate organosolv extraction of lignins from softwood biomass. GDEs assessed in the present investigation consist of glycerol skeletons etherified with alkyl constituents (e.g., methyl, ethyl), including 1,3-glycerol diethers and 1,2,3-glycerol triethers. GDEs are derived from glycerol, a high-volume byproduct produced by the biodiesel industry. In comparison to glycerol, GDEs are ∼3 orders of magnitude less viscous while maintaining high boiling points (>160 °C), facilitating improved processability and extraction of lignins under mild temperatures and pressures. The influence of organosolv conditions, specifically temperature (120–180 °C), batch holding time (10–240 min), Brønsted acid concentration, and solvent composition on the extraction of lignins from softwood feedstocks are evaluated. Under optimal conditions (150 °C, 60 min), over 70 wt % of lignins are extracted from softwood biomass. More severe conditions (e.g., 160 °C, 60 min; 180 °C, 60 min) promoted higher delignification (80–90 wt %) but at the expense of lower pulp yields ( |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.4c04801 |