Loading…
Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination
Nanobubbles (NBs) have been reported to be effective at accelerating the metabolism of living organisms, but the mechanism is not yet well understood. In this study, the production of reactive oxygen species (ROS) by NBs and its effect on seed germinations were investigated. The fluorescence respons...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2016-03, Vol.4 (3), p.1347-1353 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanobubbles (NBs) have been reported to be effective at accelerating the metabolism of living organisms, but the mechanism is not yet well understood. In this study, the production of reactive oxygen species (ROS) by NBs and its effect on seed germinations were investigated. The fluorescence response of APF to NB water was measured. It changed depending on the NB number density which decreased with storage time. This indicated that NBs could produce ROS and the amount of ROS had positive correlation with the NB number density. The fluorescence intensity of APF increases linearly with the concentration of H2O2 in the range of 0–1 mM. Just after the NB generation, the oxidative capacities represented by amount of ROS of oxygen NB water and gas-mixture (air + nitrogen) NB water were estimated to be equivalent to 0.5 and 0.3 mM H2O2 respectively. The seed germination tests were performed in the NB water, distilled water and H2O2 solutions. The germination rate at each observation times of seeds submerged in gas-mixture NB water and 0.3 mM H2O2 solutions were both higher than those submerged in distilled water. The amounts of superoxide radicals in the seeds were detected using NBT staining. The results of absorbance data proved that the amounts of O2 •– in seeds submerged in gas-mixture NB water and in 0.3 mM H2O2 solution were similar and significantly higher than those in the distilled water. These results indicated that moderate level of exogenous ROS produced by NB water played an important role in seed germination. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.5b01368 |