Loading…

Organics- and Surfactant-Free Molten Salt Medium Controlled Synthesis of Pt‑M (M = Cu and Pd) Bi- and Trimetallic Nanocubes and Nanosheets

We present a novel synthetic strategy for the shape-controlled synthesis of Pt-based alloy nanoparticles (NPs) in inorganic molten salt without using any organic surfactants or capping agents. Graphene oxide (GO) was chosen as the stabilizer in the inorganic molten salt synthetic strategy, due to th...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2017-05, Vol.5 (5), p.4205-4213
Main Authors: Qiu, Pengtao, Bi, Jinglei, Zhang, Xiaojing, Yang, Shengchun
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a novel synthetic strategy for the shape-controlled synthesis of Pt-based alloy nanoparticles (NPs) in inorganic molten salt without using any organic surfactants or capping agents. Graphene oxide (GO) was chosen as the stabilizer in the inorganic molten salt synthetic strategy, due to the existence of various oxygen-containing functional groups on its surface, which adsorb, anchor, and stabilize the metal ions or NPs. After GO was added in molten salt, the PtPd nanosheets were formed on its surface in H2 atmosphere. In addition, when KI was chosen as the shape-inducing agent to selectively adsorb on and fully protect the (100) facets of alloys, PtPd nanocubes with core–shell structure, PtCu nanohemicubes, and PtPdCu nanocubes were prepared successfully on the surface of GO in molten salt. Introduction of GO as the stabilizer in molten salt proves a new approach in synthesis of Pt-based nanocrystals with controlled morphologies.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.7b00193