Loading…
Polymer-Supported Bis-1,2,4-triazolium Ionic Tag Framework for an Efficient Pd(0) Catalytic System in Biomass Derived γ‑Valerolactone
A resin-bound 1,2,4-triazolium ionic tag has been used as support for the preparation of solid palladium nanoparticles (Pd(0)-POLI-TAG-Pd). Owing to the pincer-type architecture of the triazolium ligand, the stabilization of a high amount of palladium nanoparticles (16 wt %) has been possible. The c...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2019-04, Vol.7 (7), p.6939-6946 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A resin-bound 1,2,4-triazolium ionic tag has been used as support for the preparation of solid palladium nanoparticles (Pd(0)-POLI-TAG-Pd). Owing to the pincer-type architecture of the triazolium ligand, the stabilization of a high amount of palladium nanoparticles (16 wt %) has been possible. The catalytic system has been fully characterized and used in low amounts (i.e., 0.1 mol % palladium loading) in representative Heck–Mizoroki cross-coupling processes. A negligible release of the metal was demonstrated, and a high activity was obtained over more runs. Besides, the protocol has been optimized for the use of safe biomass-derived γ-valerolactone reaction medium. |
---|---|
ISSN: | 2168-0485 2168-0485 |
DOI: | 10.1021/acssuschemeng.8b06502 |