Loading…

Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide

The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2020-01, Vol.8 (1), p.179-189
Main Authors: Nellaiappan, Subramanian, Kumar, Ritesh, Shivakumara, C, Irusta, Silvia, Hachtel, Jordan A, Idrobo, Juan-Carlos, Singh, Abhishek K, Tiwary, Chandra Sekhar, Sharma, Sudhanshu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3
cites cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3
container_end_page 189
container_issue 1
container_start_page 179
container_title ACS sustainable chemistry & engineering
container_volume 8
creator Nellaiappan, Subramanian
Kumar, Ritesh
Shivakumara, C
Irusta, Silvia
Hachtel, Jordan A
Idrobo, Juan-Carlos
Singh, Abhishek K
Tiwary, Chandra Sekhar
Sharma, Sudhanshu
description The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.
doi_str_mv 10.1021/acssuschemeng.9b05087
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_9b05087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a387528839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVNBPQPIPpNixHZxjVQqtVKmH0nPk2JvWVRNHtlPoH_DZpI8DnNjLjLQzO6tB6ImSESUpfVY6hC7oLdTQbEZ5SQSRLzdokNJMJoRLcfuL36NhCDvST56zVNIB-p7uQUfvPJhOR-sa7Co8Ub7s2at1X9YAtk10eAUnoT0Anh2Nd_osCVhFvHCfeHkA37oITbRqj9fBNhs8D652vt1ajcfR1T2sujJEG7tzjm3wxLUteLw8pTyiu0rtAwyv-IDWb9OPySxZLN_nk_EiUYynMVGcScGqVGqWc8oh17LKJM0ZaKJKTaniImOcloKWwLPKqFwyYUpjRJZxatgDEpe72rsQPFRF622t_LGgpDg1WvxptLg22vvoxdevi53rfNN_-Y_nB6uagk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</creator><creatorcontrib>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</creatorcontrib><description>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.9b05087</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2020-01, Vol.8 (1), p.179-189</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</citedby><cites>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</cites><orcidid>0000-0002-9318-2477 ; 0000-0001-9760-9768 ; 0000-0002-5217-9941 ; 0000-0002-9728-0920 ; 0000-0002-2966-9088 ; 0000-0002-7631-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nellaiappan, Subramanian</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Shivakumara, C</creatorcontrib><creatorcontrib>Irusta, Silvia</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Singh, Abhishek K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Sharma, Sudhanshu</creatorcontrib><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVNBPQPIPpNixHZxjVQqtVKmH0nPk2JvWVRNHtlPoH_DZpI8DnNjLjLQzO6tB6ImSESUpfVY6hC7oLdTQbEZ5SQSRLzdokNJMJoRLcfuL36NhCDvST56zVNIB-p7uQUfvPJhOR-sa7Co8Ub7s2at1X9YAtk10eAUnoT0Anh2Nd_osCVhFvHCfeHkA37oITbRqj9fBNhs8D652vt1ajcfR1T2sujJEG7tzjm3wxLUteLw8pTyiu0rtAwyv-IDWb9OPySxZLN_nk_EiUYynMVGcScGqVGqWc8oh17LKJM0ZaKJKTaniImOcloKWwLPKqFwyYUpjRJZxatgDEpe72rsQPFRF622t_LGgpDg1WvxptLg22vvoxdevi53rfNN_-Y_nB6uagk8</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Nellaiappan, Subramanian</creator><creator>Kumar, Ritesh</creator><creator>Shivakumara, C</creator><creator>Irusta, Silvia</creator><creator>Hachtel, Jordan A</creator><creator>Idrobo, Juan-Carlos</creator><creator>Singh, Abhishek K</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Sharma, Sudhanshu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9318-2477</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0002-5217-9941</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-2966-9088</orcidid><orcidid>https://orcid.org/0000-0002-7631-6744</orcidid></search><sort><creationdate>20200113</creationdate><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><author>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nellaiappan, Subramanian</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Shivakumara, C</creatorcontrib><creatorcontrib>Irusta, Silvia</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Singh, Abhishek K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Sharma, Sudhanshu</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nellaiappan, Subramanian</au><au>Kumar, Ritesh</au><au>Shivakumara, C</au><au>Irusta, Silvia</au><au>Hachtel, Jordan A</au><au>Idrobo, Juan-Carlos</au><au>Singh, Abhishek K</au><au>Tiwary, Chandra Sekhar</au><au>Sharma, Sudhanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-01-13</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>179</spage><epage>189</epage><pages>179-189</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.9b05087</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9318-2477</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0002-5217-9941</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-2966-9088</orcidid><orcidid>https://orcid.org/0000-0002-7631-6744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2020-01, Vol.8 (1), p.179-189
issn 2168-0485
2168-0485
language eng
recordid cdi_crossref_primary_10_1021_acssuschemeng_9b05087
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroreduction%20of%20Carbon%20Dioxide%20into%20Selective%20Hydrocarbons%20at%20Low%20Overpotential%20Using%20Isomorphic%20Atomic%20Substitution%20in%20Copper%20Oxide&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Nellaiappan,%20Subramanian&rft.date=2020-01-13&rft.volume=8&rft.issue=1&rft.spage=179&rft.epage=189&rft.pages=179-189&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.9b05087&rft_dat=%3Cacs_cross%3Ea387528839%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true