Loading…
Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide
The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2020-01, Vol.8 (1), p.179-189 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3 |
container_end_page | 189 |
container_issue | 1 |
container_start_page | 179 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 8 |
creator | Nellaiappan, Subramanian Kumar, Ritesh Shivakumara, C Irusta, Silvia Hachtel, Jordan A Idrobo, Juan-Carlos Singh, Abhishek K Tiwary, Chandra Sekhar Sharma, Sudhanshu |
description | The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface. |
doi_str_mv | 10.1021/acssuschemeng.9b05087 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssuschemeng_9b05087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a387528839</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVNBPQPIPpNixHZxjVQqtVKmH0nPk2JvWVRNHtlPoH_DZpI8DnNjLjLQzO6tB6ImSESUpfVY6hC7oLdTQbEZ5SQSRLzdokNJMJoRLcfuL36NhCDvST56zVNIB-p7uQUfvPJhOR-sa7Co8Ub7s2at1X9YAtk10eAUnoT0Anh2Nd_osCVhFvHCfeHkA37oITbRqj9fBNhs8D652vt1ajcfR1T2sujJEG7tzjm3wxLUteLw8pTyiu0rtAwyv-IDWb9OPySxZLN_nk_EiUYynMVGcScGqVGqWc8oh17LKJM0ZaKJKTaniImOcloKWwLPKqFwyYUpjRJZxatgDEpe72rsQPFRF622t_LGgpDg1WvxptLg22vvoxdevi53rfNN_-Y_nB6uagk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</creator><creatorcontrib>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</creatorcontrib><description>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.9b05087</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2020-01, Vol.8 (1), p.179-189</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</citedby><cites>FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</cites><orcidid>0000-0002-9318-2477 ; 0000-0001-9760-9768 ; 0000-0002-5217-9941 ; 0000-0002-9728-0920 ; 0000-0002-2966-9088 ; 0000-0002-7631-6744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Nellaiappan, Subramanian</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Shivakumara, C</creatorcontrib><creatorcontrib>Irusta, Silvia</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Singh, Abhishek K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Sharma, Sudhanshu</creatorcontrib><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIVNBPQPIPpNixHZxjVQqtVKmH0nPk2JvWVRNHtlPoH_DZpI8DnNjLjLQzO6tB6ImSESUpfVY6hC7oLdTQbEZ5SQSRLzdokNJMJoRLcfuL36NhCDvST56zVNIB-p7uQUfvPJhOR-sa7Co8Ub7s2at1X9YAtk10eAUnoT0Anh2Nd_osCVhFvHCfeHkA37oITbRqj9fBNhs8D652vt1ajcfR1T2sujJEG7tzjm3wxLUteLw8pTyiu0rtAwyv-IDWb9OPySxZLN_nk_EiUYynMVGcScGqVGqWc8oh17LKJM0ZaKJKTaniImOcloKWwLPKqFwyYUpjRJZxatgDEpe72rsQPFRF622t_LGgpDg1WvxptLg22vvoxdevi53rfNN_-Y_nB6uagk8</recordid><startdate>20200113</startdate><enddate>20200113</enddate><creator>Nellaiappan, Subramanian</creator><creator>Kumar, Ritesh</creator><creator>Shivakumara, C</creator><creator>Irusta, Silvia</creator><creator>Hachtel, Jordan A</creator><creator>Idrobo, Juan-Carlos</creator><creator>Singh, Abhishek K</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Sharma, Sudhanshu</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9318-2477</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0002-5217-9941</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-2966-9088</orcidid><orcidid>https://orcid.org/0000-0002-7631-6744</orcidid></search><sort><creationdate>20200113</creationdate><title>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</title><author>Nellaiappan, Subramanian ; Kumar, Ritesh ; Shivakumara, C ; Irusta, Silvia ; Hachtel, Jordan A ; Idrobo, Juan-Carlos ; Singh, Abhishek K ; Tiwary, Chandra Sekhar ; Sharma, Sudhanshu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nellaiappan, Subramanian</creatorcontrib><creatorcontrib>Kumar, Ritesh</creatorcontrib><creatorcontrib>Shivakumara, C</creatorcontrib><creatorcontrib>Irusta, Silvia</creatorcontrib><creatorcontrib>Hachtel, Jordan A</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Singh, Abhishek K</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Sharma, Sudhanshu</creatorcontrib><collection>CrossRef</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nellaiappan, Subramanian</au><au>Kumar, Ritesh</au><au>Shivakumara, C</au><au>Irusta, Silvia</au><au>Hachtel, Jordan A</au><au>Idrobo, Juan-Carlos</au><au>Singh, Abhishek K</au><au>Tiwary, Chandra Sekhar</au><au>Sharma, Sudhanshu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-01-13</date><risdate>2020</risdate><volume>8</volume><issue>1</issue><spage>179</spage><epage>189</epage><pages>179-189</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The conversion of carbon dioxide into selective hydrocarbons is vital for green energy generation. Due to the chemical instability and lower activity, environmentally stable transition metal oxides (e.g., CuO) are unpopular for CO2 electroreduction catalysis. Here, we demonstrate substitution of Cu with an isomorphic atom, i.e., Ni, in CuO and utilize it for improving the hydrocarbon selectivity by 4 times as compared to that of pristine CuO. Hydrocarbon formation is achieved at the lowest possible applied potential (−0.2 V, reversible hydrogen electrode). This gives the overpotential of about 0.37 V for methane and 0.28 V for ethylene, the lowest ever reported. Employing the ionic interaction between Ni and Cu, this catalyst suppresses the hydrogen evolution reaction to improve the hydrocarbon selectivity prominently. It is observed that current normalized by the Brunauer–Emmett–Teller surface area gives 15–20 times enhancement in the case of Ni-substituted CuO compared to undoped CuO. The in situ experiments indicate that Ni-doped CuO prefers CO pathways compared to formate, resulting into high hydrocarbon selectivity. The experimental observation is further supported by density functional theory studies, which reveal that the Ni-doped CuO catalyst has a higher limiting potential for CO2 electroreduction to CH4 due to the stabilization of the CH2O intermediate on the Cu0.9375Ni0.0625O surface rather than the CHO intermediate, in comparison to the pristine CuO surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.9b05087</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9318-2477</orcidid><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid><orcidid>https://orcid.org/0000-0002-5217-9941</orcidid><orcidid>https://orcid.org/0000-0002-9728-0920</orcidid><orcidid>https://orcid.org/0000-0002-2966-9088</orcidid><orcidid>https://orcid.org/0000-0002-7631-6744</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2020-01, Vol.8 (1), p.179-189 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssuschemeng_9b05087 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Electroreduction of Carbon Dioxide into Selective Hydrocarbons at Low Overpotential Using Isomorphic Atomic Substitution in Copper Oxide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroreduction%20of%20Carbon%20Dioxide%20into%20Selective%20Hydrocarbons%20at%20Low%20Overpotential%20Using%20Isomorphic%20Atomic%20Substitution%20in%20Copper%20Oxide&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Nellaiappan,%20Subramanian&rft.date=2020-01-13&rft.volume=8&rft.issue=1&rft.spage=179&rft.epage=189&rft.pages=179-189&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.9b05087&rft_dat=%3Cacs_cross%3Ea387528839%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a342t-a43853f28c39414e9c8f68193ec0abc11a456341b51be46fda9835dbdd56641d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |