Loading…
Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones
Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded f...
Saved in:
Published in: | ACS synthetic biology 2020-08, Vol.9 (8), p.2107-2118 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63 |
---|---|
cites | cdi_FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63 |
container_end_page | 2118 |
container_issue | 8 |
container_start_page | 2107 |
container_title | ACS synthetic biology |
container_volume | 9 |
creator | Chesterfield, Rebecca J Whitfield, Jason H Pouvreau, Benjamin Cao, Da Alexandrov, Kirill Beveridge, Christine A Vickers, Claudia E |
description | Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants. |
doi_str_mv | 10.1021/acssynbio.0c00192 |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_acssynbio_0c00192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c904769600</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWGofwLu8wNYc9nipPahQFDxcypJNZkvKNpFMKtSnN6VFvHJu_oGZbxg-Qq45m3Im-I3SiHvXWT9lmjHeiDMyErzkWcFKef6nvyQTxA1LVRSykPWIfLyoaL1TA50D2rWjvqdP_gsGuhx2PgBqcJEu3Pd-C_TOegSHPiDtfaBzG0DHBMYU6ciBfY3Brv2gdPQO8Ipc9GpAmJxyTN6Xi7fZQ7Z6vn-c3a4ylYsiZrzKTSdqLnMGVd5LoZoSGmUaZirJulzUpmtMpYQQuVGQvlemqkujtK5rrUs5Jvx4VwePGKBvP4PdqrBvOWsPitpfRe1JUWKyI5NG7cbvQpKA_-z_ANIHbQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Chesterfield, Rebecca J ; Whitfield, Jason H ; Pouvreau, Benjamin ; Cao, Da ; Alexandrov, Kirill ; Beveridge, Christine A ; Vickers, Claudia E</creator><creatorcontrib>Chesterfield, Rebecca J ; Whitfield, Jason H ; Pouvreau, Benjamin ; Cao, Da ; Alexandrov, Kirill ; Beveridge, Christine A ; Vickers, Claudia E</creatorcontrib><description>Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.0c00192</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS synthetic biology, 2020-08, Vol.9 (8), p.2107-2118</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63</citedby><cites>FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63</cites><orcidid>0000-0001-5037-6389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chesterfield, Rebecca J</creatorcontrib><creatorcontrib>Whitfield, Jason H</creatorcontrib><creatorcontrib>Pouvreau, Benjamin</creatorcontrib><creatorcontrib>Cao, Da</creatorcontrib><creatorcontrib>Alexandrov, Kirill</creatorcontrib><creatorcontrib>Beveridge, Christine A</creatorcontrib><creatorcontrib>Vickers, Claudia E</creatorcontrib><title>Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.</description><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWGofwLu8wNYc9nipPahQFDxcypJNZkvKNpFMKtSnN6VFvHJu_oGZbxg-Qq45m3Im-I3SiHvXWT9lmjHeiDMyErzkWcFKef6nvyQTxA1LVRSykPWIfLyoaL1TA50D2rWjvqdP_gsGuhx2PgBqcJEu3Pd-C_TOegSHPiDtfaBzG0DHBMYU6ciBfY3Brv2gdPQO8Ipc9GpAmJxyTN6Xi7fZQ7Z6vn-c3a4ylYsiZrzKTSdqLnMGVd5LoZoSGmUaZirJulzUpmtMpYQQuVGQvlemqkujtK5rrUs5Jvx4VwePGKBvP4PdqrBvOWsPitpfRe1JUWKyI5NG7cbvQpKA_-z_ANIHbQ0</recordid><startdate>20200821</startdate><enddate>20200821</enddate><creator>Chesterfield, Rebecca J</creator><creator>Whitfield, Jason H</creator><creator>Pouvreau, Benjamin</creator><creator>Cao, Da</creator><creator>Alexandrov, Kirill</creator><creator>Beveridge, Christine A</creator><creator>Vickers, Claudia E</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5037-6389</orcidid></search><sort><creationdate>20200821</creationdate><title>Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones</title><author>Chesterfield, Rebecca J ; Whitfield, Jason H ; Pouvreau, Benjamin ; Cao, Da ; Alexandrov, Kirill ; Beveridge, Christine A ; Vickers, Claudia E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chesterfield, Rebecca J</creatorcontrib><creatorcontrib>Whitfield, Jason H</creatorcontrib><creatorcontrib>Pouvreau, Benjamin</creatorcontrib><creatorcontrib>Cao, Da</creatorcontrib><creatorcontrib>Alexandrov, Kirill</creatorcontrib><creatorcontrib>Beveridge, Christine A</creatorcontrib><creatorcontrib>Vickers, Claudia E</creatorcontrib><collection>CrossRef</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chesterfield, Rebecca J</au><au>Whitfield, Jason H</au><au>Pouvreau, Benjamin</au><au>Cao, Da</au><au>Alexandrov, Kirill</au><au>Beveridge, Christine A</au><au>Vickers, Claudia E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2020-08-21</date><risdate>2020</risdate><volume>9</volume><issue>8</issue><spage>2107</spage><epage>2118</epage><pages>2107-2118</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssynbio.0c00192</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5037-6389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2020-08, Vol.9 (8), p.2107-2118 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_crossref_primary_10_1021_acssynbio_0c00192 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Design%20of%20Novel%20Fluorescent%20Enzyme%20Biosensors%20for%20Direct%20Detection%20of%20Strigolactones&rft.jtitle=ACS%20synthetic%20biology&rft.au=Chesterfield,%20Rebecca%20J&rft.date=2020-08-21&rft.volume=9&rft.issue=8&rft.spage=2107&rft.epage=2118&rft.pages=2107-2118&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.0c00192&rft_dat=%3Cacs_cross%3Ec904769600%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a425t-174db281340e74f32a96e9ad90d730b428db9d7a2224dae005ad786dacc88cc63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |