Loading…
Retinoic Acid Binds to the C2-Domain of Protein Kinase Cα
Protein kinase Cα (PKCα) is a key enzyme regulating the physiology of cells and their growth, differentiation, and apoptosis. PKC activity is known to be modulated by all-trans retinoic acid (atRA), although neither the action mechanism nor even the possible binding to PKCs has been established. Cry...
Saved in:
Published in: | Biochemistry (Easton) 2003-07, Vol.42 (29), p.8774-8779 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein kinase Cα (PKCα) is a key enzyme regulating the physiology of cells and their growth, differentiation, and apoptosis. PKC activity is known to be modulated by all-trans retinoic acid (atRA), although neither the action mechanism nor even the possible binding to PKCs has been established. Crystals of the C2-domain of PKCα, a regulatory module in the protein that binds Ca2+ and acidic phospholipids, have now been obtained by cocrystallization with atRA. The crystal structure, refined at 2.0 Å resolution, shows that RA binds to the C2-domain in two locations coincident with the two binding sites previously reported for acidic phospholipids. The first binding site corresponds to the Ca2+-binding pocket, where Ca2+ ions mediate the interactions of atRA with the protein, as they do with acidic phospholipids. The second binding site corresponds to the conserved lysine-rich cluster localized in β-strands three and four. These observations are strongly supported by [3H]-atRA-binding experiments combined with site-directed mutagenesis. Wild-type C2-domain binds 2 mol of atRA per mol of protein, while the rate reduces to one in the case of C2-domain variants, in which mutations affect either Ca2+ coordination or the integrity of the lysine-rich cluster site. Competition between atRA and acidic phospholipids to bind to PKC is a possible mechanism for modulating PKCα activity. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi034713g |