Loading…

The 1.1 Å Resolution Crystal Structure of [Tyr15]EpI, a Novel α-Conotoxin from Conus episcopatus, Solved by Direct Methods

Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. α-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and s...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1998-08, Vol.37 (33), p.11425-11433
Main Authors: Hu, Shu-Hong, Loughnan, Marion, Miller, Russ, Weeks, Charles M, Blessing, Robert H, Alewood, Paul F, Lewis, Richard J, Martin, Jennifer L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. α-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the α3β2 and α3β4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr15]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr15]EpI solved at a resolution of 1.1 Å using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo by direct methods. The [Tyr15]EpI structure brings to six the number of α-conotoxin structures that have been determined to date. Four of these, [Tyr15]EpI, PnIA, PnIB, and MII, have an α4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr15]EpI has the same backbone fold as the other α4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr15]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr15]EpI and MII may have different binding modes for the same receptor subtype.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi9806549