Loading…
Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone
The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) genera...
Saved in:
Published in: | Crystal growth & design 2011-05, Vol.11 (5), p.1607-1614 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3 |
container_end_page | 1614 |
container_issue | 5 |
container_start_page | 1607 |
container_title | Crystal growth & design |
container_volume | 11 |
creator | Massaro, Francesco Roberto Rubbo, Marco Aquilano, Dino |
description | The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium. |
doi_str_mv | 10.1021/cg101570c |
format | article |
fullrecord | <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg101570c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c440775719</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</originalsourceid><addsrcrecordid>eNptUM1OAjEYbIwmInrwDXoxkcNiv3a7W4-GCJhAOIAXjdl0-wNLFrq2y4En8-6TWYJy8vR9mcxMZgahWyB9IBQe1BII8JyoM9QBTkWSc8LP__5UsEt0FcKaEJJnjHXQcrEyzpu2UrLGz5-7qq5KX-02eOp8s3K1W-6xs3i0b0IE7wdyPku_v-iYznp9TPs4yvG8NU1jNB5KZcKB3UZwKqstficEPvCb25prdGFlHczN7-2i1-HzYjBOJrPRy-BpkkhK0jZRItcGSAZZygQFSywxJWWK25KV2mSCWRlRKbgAAaCtFOmj5sJqUKXmmnVR7-irvAvBG1s0vtpIvy-AFIeFitNCkXt35DYyxPrWy62qwklAU4gZYpATT6pQrN3Ob2ODf_x-AOxccC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</creator><creatorcontrib>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</creatorcontrib><description>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg101570c</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Crystal growth & design, 2011-05, Vol.11 (5), p.1607-1614</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</citedby><cites>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24138264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Massaro, Francesco Roberto</creatorcontrib><creatorcontrib>Rubbo, Marco</creatorcontrib><creatorcontrib>Aquilano, Dino</creatorcontrib><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptUM1OAjEYbIwmInrwDXoxkcNiv3a7W4-GCJhAOIAXjdl0-wNLFrq2y4En8-6TWYJy8vR9mcxMZgahWyB9IBQe1BII8JyoM9QBTkWSc8LP__5UsEt0FcKaEJJnjHXQcrEyzpu2UrLGz5-7qq5KX-02eOp8s3K1W-6xs3i0b0IE7wdyPku_v-iYznp9TPs4yvG8NU1jNB5KZcKB3UZwKqstficEPvCb25prdGFlHczN7-2i1-HzYjBOJrPRy-BpkkhK0jZRItcGSAZZygQFSywxJWWK25KV2mSCWRlRKbgAAaCtFOmj5sJqUKXmmnVR7-irvAvBG1s0vtpIvy-AFIeFitNCkXt35DYyxPrWy62qwklAU4gZYpATT6pQrN3Ob2ODf_x-AOxccC4</recordid><startdate>20110504</startdate><enddate>20110504</enddate><creator>Massaro, Francesco Roberto</creator><creator>Rubbo, Marco</creator><creator>Aquilano, Dino</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110504</creationdate><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><author>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaro, Francesco Roberto</creatorcontrib><creatorcontrib>Rubbo, Marco</creatorcontrib><creatorcontrib>Aquilano, Dino</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaro, Francesco Roberto</au><au>Rubbo, Marco</au><au>Aquilano, Dino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2011-05-04</date><risdate>2011</risdate><volume>11</volume><issue>5</issue><spage>1607</spage><epage>1614</epage><pages>1607-1614</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg101570c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2011-05, Vol.11 (5), p.1607-1614 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_crossref_primary_10_1021_cg101570c |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Methods of crystal growth physics of crystal growth Physics Theory and models of crystal growth physics of crystal growth, crystal morphology and orientation |
title | Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Equilibrium%20Morphology%20of%20Gypsum%20(CaSO4%C2%B72H2O).%202.%20The%20Stepped%20Faces%20of%20the%20Main%20%5B001%5D%20Zone&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Massaro,%20Francesco%20Roberto&rft.date=2011-05-04&rft.volume=11&rft.issue=5&rft.spage=1607&rft.epage=1614&rft.pages=1607-1614&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg101570c&rft_dat=%3Cacs_cross%3Ec440775719%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |