Loading…

Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone

The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) genera...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2011-05, Vol.11 (5), p.1607-1614
Main Authors: Massaro, Francesco Roberto, Rubbo, Marco, Aquilano, Dino
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3
cites cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3
container_end_page 1614
container_issue 5
container_start_page 1607
container_title Crystal growth & design
container_volume 11
creator Massaro, Francesco Roberto
Rubbo, Marco
Aquilano, Dino
description The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.
doi_str_mv 10.1021/cg101570c
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg101570c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c440775719</sourcerecordid><originalsourceid>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</originalsourceid><addsrcrecordid>eNptUM1OAjEYbIwmInrwDXoxkcNiv3a7W4-GCJhAOIAXjdl0-wNLFrq2y4En8-6TWYJy8vR9mcxMZgahWyB9IBQe1BII8JyoM9QBTkWSc8LP__5UsEt0FcKaEJJnjHXQcrEyzpu2UrLGz5-7qq5KX-02eOp8s3K1W-6xs3i0b0IE7wdyPku_v-iYznp9TPs4yvG8NU1jNB5KZcKB3UZwKqstficEPvCb25prdGFlHczN7-2i1-HzYjBOJrPRy-BpkkhK0jZRItcGSAZZygQFSywxJWWK25KV2mSCWRlRKbgAAaCtFOmj5sJqUKXmmnVR7-irvAvBG1s0vtpIvy-AFIeFitNCkXt35DYyxPrWy62qwklAU4gZYpATT6pQrN3Ob2ODf_x-AOxccC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</creator><creatorcontrib>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</creatorcontrib><description>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg101570c</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics ; Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><ispartof>Crystal growth &amp; design, 2011-05, Vol.11 (5), p.1607-1614</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</citedby><cites>FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24138264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Massaro, Francesco Roberto</creatorcontrib><creatorcontrib>Rubbo, Marco</creatorcontrib><creatorcontrib>Aquilano, Dino</creatorcontrib><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><subject>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptUM1OAjEYbIwmInrwDXoxkcNiv3a7W4-GCJhAOIAXjdl0-wNLFrq2y4En8-6TWYJy8vR9mcxMZgahWyB9IBQe1BII8JyoM9QBTkWSc8LP__5UsEt0FcKaEJJnjHXQcrEyzpu2UrLGz5-7qq5KX-02eOp8s3K1W-6xs3i0b0IE7wdyPku_v-iYznp9TPs4yvG8NU1jNB5KZcKB3UZwKqstficEPvCb25prdGFlHczN7-2i1-HzYjBOJrPRy-BpkkhK0jZRItcGSAZZygQFSywxJWWK25KV2mSCWRlRKbgAAaCtFOmj5sJqUKXmmnVR7-irvAvBG1s0vtpIvy-AFIeFitNCkXt35DYyxPrWy62qwklAU4gZYpATT6pQrN3Ob2ODf_x-AOxccC4</recordid><startdate>20110504</startdate><enddate>20110504</enddate><creator>Massaro, Francesco Roberto</creator><creator>Rubbo, Marco</creator><creator>Aquilano, Dino</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110504</creationdate><title>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</title><author>Massaro, Francesco Roberto ; Rubbo, Marco ; Aquilano, Dino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><topic>Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massaro, Francesco Roberto</creatorcontrib><creatorcontrib>Rubbo, Marco</creatorcontrib><creatorcontrib>Aquilano, Dino</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massaro, Francesco Roberto</au><au>Rubbo, Marco</au><au>Aquilano, Dino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2011-05-04</date><risdate>2011</risdate><volume>11</volume><issue>5</issue><spage>1607</spage><epage>1614</epage><pages>1607-1614</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The athermal equilibrium shape (ES) of gypsum crystal is calculated, in a vacuum, in the zone interval of the stepped {1k0} forms (3 ≤ k ≤ 8). The surface profiles are obtained by applying either the Hartman−Perdok method of the periodic bond chains (PBC) or the method of systematic cuts (SC) generated under the only conditions of stoichiometry, electroneutrality, and annihilation of the dipole moment perpendicular to each d1k0 slice. The specific surface energy values γ1k0 have been calculated, both for ideal and relaxed surface profiles, using a semiempirical potential function proposed by Adam. From calculations, it follows that the ES in the [001] zone is characterized not only by the well-known {120} and {010} flat forms and by the stepped {100} pinacoid but also by the {140} and {180} stepped forms. Further, following the PBC method, the stepped {130} and {170} forms also should enter the ES. Finally, an unambiguous analogy arises between our results and the systematic presence of the {1k0} faces on the giant crystals found in the Naica mine, whose growth occurs very near the equilibrium.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg101570c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2011-05, Vol.11 (5), p.1607-1614
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg101570c
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Methods of crystal growth
physics of crystal growth
Physics
Theory and models of crystal growth
physics of crystal growth, crystal morphology and orientation
title Theoretical Equilibrium Morphology of Gypsum (CaSO4·2H2O). 2. The Stepped Faces of the Main [001] Zone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Equilibrium%20Morphology%20of%20Gypsum%20(CaSO4%C2%B72H2O).%202.%20The%20Stepped%20Faces%20of%20the%20Main%20%5B001%5D%20Zone&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Massaro,%20Francesco%20Roberto&rft.date=2011-05-04&rft.volume=11&rft.issue=5&rft.spage=1607&rft.epage=1614&rft.pages=1607-1614&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg101570c&rft_dat=%3Cacs_cross%3Ec440775719%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a204t-c87de1061643821f0f0eb23c5fb3bde683fa1f0a8581811dfa849d58fd1cbd5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true