Loading…

Flux Engineering To Control In-Plane Crystal and Morphological Orientation

We tailored nanostructured morphology and crystal texture of iron nanocolumns by engineering the inclination and azimuthal directions of the collimated flux characteristic of glancing angle deposition (GLAD). Under continuous substrate rotation, the flux is azimuthally isotropic within one rotation....

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design 2012-07, Vol.12 (7), p.3661-3667
Main Authors: LaForge, Joshua M, Ingram, Grayson L, Taschuk, Michael T, Brett, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3
cites cdi_FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3
container_end_page 3667
container_issue 7
container_start_page 3661
container_title Crystal growth & design
container_volume 12
creator LaForge, Joshua M
Ingram, Grayson L
Taschuk, Michael T
Brett, Michael J
description We tailored nanostructured morphology and crystal texture of iron nanocolumns by engineering the inclination and azimuthal directions of the collimated flux characteristic of glancing angle deposition (GLAD). Under continuous substrate rotation, the flux is azimuthally isotropic within one rotation. With large substrate rotation speeds, we can deposit vertical nanocolumns with a faceted, tetrahedral apex, BCC crystal structure and ⟨111⟩ fiber texture. Designing the flux to have an azimuthal 3-fold symmetry, which reflects the symmetry of the tetrahedral apex, allows us to induce both an in-plane and out-of-plane texture (biaxial texture) by evolutionary selection. In-plane crystal orientation is accompanied by a preferential azimuthal nanocolumn orientation, where the sides of tetrahedral apex are directed toward the flux direction. This work demonstrates the flux engineering technique, which can orient in-plane crystal texture and morphology of crystalline nanocolumns on amorphous substrates. This control is a useful addition to vapor–solid, physical self-assembly with the potential to improve the performance of porous thin film architectures as biaxial buffer layers, and in a variety of device applications such as photovoltaics and energy storage.
doi_str_mv 10.1021/cg300469s
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cg300469s</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b121338871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EEqUw8A28MDAEznHsxCOKWigqKkOZI8d_gqtgV3Yq0W9PUKEsTPd0-t3Tu4fQNYE7Ajm5Vx0FKLhIJ2hCWF5lJQN2-quLip6ji5Q2AFBySifoed7vPvHMd84bE53v8DrgOvghhh4vfPbaS29wHfdpkD2WXuOXELfvoQ-dU-NmFZ3xgxxc8JfozMo-maufOUVv89m6fsqWq8dF_bDMJGVsyKipOFUMCNO5IULJXNNWa8XzVnAjhbZMtLbkpi0tFKK0xDIDIDUnwopK0ym6PfiqGFKKxjbb6D5k3DcEmu8SmmMJI3tzYLcyjXFtlF65dDzIOYiqrKo_TqrUbMIu-vGDf_y-AEf6aMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flux Engineering To Control In-Plane Crystal and Morphological Orientation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>LaForge, Joshua M ; Ingram, Grayson L ; Taschuk, Michael T ; Brett, Michael J</creator><creatorcontrib>LaForge, Joshua M ; Ingram, Grayson L ; Taschuk, Michael T ; Brett, Michael J</creatorcontrib><description>We tailored nanostructured morphology and crystal texture of iron nanocolumns by engineering the inclination and azimuthal directions of the collimated flux characteristic of glancing angle deposition (GLAD). Under continuous substrate rotation, the flux is azimuthally isotropic within one rotation. With large substrate rotation speeds, we can deposit vertical nanocolumns with a faceted, tetrahedral apex, BCC crystal structure and ⟨111⟩ fiber texture. Designing the flux to have an azimuthal 3-fold symmetry, which reflects the symmetry of the tetrahedral apex, allows us to induce both an in-plane and out-of-plane texture (biaxial texture) by evolutionary selection. In-plane crystal orientation is accompanied by a preferential azimuthal nanocolumn orientation, where the sides of tetrahedral apex are directed toward the flux direction. This work demonstrates the flux engineering technique, which can orient in-plane crystal texture and morphology of crystalline nanocolumns on amorphous substrates. This control is a useful addition to vapor–solid, physical self-assembly with the potential to improve the performance of porous thin film architectures as biaxial buffer layers, and in a variety of device applications such as photovoltaics and energy storage.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/cg300469s</identifier><language>eng</language><publisher>Washington,DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of nanofabrication ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Physics ; Porous materials; granular materials ; Self-assembly ; Specific materials ; Structure of solids and liquids; crystallography</subject><ispartof>Crystal growth &amp; design, 2012-07, Vol.12 (7), p.3661-3667</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3</citedby><cites>FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26098788$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LaForge, Joshua M</creatorcontrib><creatorcontrib>Ingram, Grayson L</creatorcontrib><creatorcontrib>Taschuk, Michael T</creatorcontrib><creatorcontrib>Brett, Michael J</creatorcontrib><title>Flux Engineering To Control In-Plane Crystal and Morphological Orientation</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>We tailored nanostructured morphology and crystal texture of iron nanocolumns by engineering the inclination and azimuthal directions of the collimated flux characteristic of glancing angle deposition (GLAD). Under continuous substrate rotation, the flux is azimuthally isotropic within one rotation. With large substrate rotation speeds, we can deposit vertical nanocolumns with a faceted, tetrahedral apex, BCC crystal structure and ⟨111⟩ fiber texture. Designing the flux to have an azimuthal 3-fold symmetry, which reflects the symmetry of the tetrahedral apex, allows us to induce both an in-plane and out-of-plane texture (biaxial texture) by evolutionary selection. In-plane crystal orientation is accompanied by a preferential azimuthal nanocolumn orientation, where the sides of tetrahedral apex are directed toward the flux direction. This work demonstrates the flux engineering technique, which can orient in-plane crystal texture and morphology of crystalline nanocolumns on amorphous substrates. This control is a useful addition to vapor–solid, physical self-assembly with the potential to improve the performance of porous thin film architectures as biaxial buffer layers, and in a variety of device applications such as photovoltaics and energy storage.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Physics</subject><subject>Porous materials; granular materials</subject><subject>Self-assembly</subject><subject>Specific materials</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxS0EEqUw8A28MDAEznHsxCOKWigqKkOZI8d_gqtgV3Yq0W9PUKEsTPd0-t3Tu4fQNYE7Ajm5Vx0FKLhIJ2hCWF5lJQN2-quLip6ji5Q2AFBySifoed7vPvHMd84bE53v8DrgOvghhh4vfPbaS29wHfdpkD2WXuOXELfvoQ-dU-NmFZ3xgxxc8JfozMo-maufOUVv89m6fsqWq8dF_bDMJGVsyKipOFUMCNO5IULJXNNWa8XzVnAjhbZMtLbkpi0tFKK0xDIDIDUnwopK0ym6PfiqGFKKxjbb6D5k3DcEmu8SmmMJI3tzYLcyjXFtlF65dDzIOYiqrKo_TqrUbMIu-vGDf_y-AEf6aMU</recordid><startdate>20120703</startdate><enddate>20120703</enddate><creator>LaForge, Joshua M</creator><creator>Ingram, Grayson L</creator><creator>Taschuk, Michael T</creator><creator>Brett, Michael J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120703</creationdate><title>Flux Engineering To Control In-Plane Crystal and Morphological Orientation</title><author>LaForge, Joshua M ; Ingram, Grayson L ; Taschuk, Michael T ; Brett, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Physics</topic><topic>Porous materials; granular materials</topic><topic>Self-assembly</topic><topic>Specific materials</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaForge, Joshua M</creatorcontrib><creatorcontrib>Ingram, Grayson L</creatorcontrib><creatorcontrib>Taschuk, Michael T</creatorcontrib><creatorcontrib>Brett, Michael J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaForge, Joshua M</au><au>Ingram, Grayson L</au><au>Taschuk, Michael T</au><au>Brett, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flux Engineering To Control In-Plane Crystal and Morphological Orientation</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2012-07-03</date><risdate>2012</risdate><volume>12</volume><issue>7</issue><spage>3661</spage><epage>3667</epage><pages>3661-3667</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>We tailored nanostructured morphology and crystal texture of iron nanocolumns by engineering the inclination and azimuthal directions of the collimated flux characteristic of glancing angle deposition (GLAD). Under continuous substrate rotation, the flux is azimuthally isotropic within one rotation. With large substrate rotation speeds, we can deposit vertical nanocolumns with a faceted, tetrahedral apex, BCC crystal structure and ⟨111⟩ fiber texture. Designing the flux to have an azimuthal 3-fold symmetry, which reflects the symmetry of the tetrahedral apex, allows us to induce both an in-plane and out-of-plane texture (biaxial texture) by evolutionary selection. In-plane crystal orientation is accompanied by a preferential azimuthal nanocolumn orientation, where the sides of tetrahedral apex are directed toward the flux direction. This work demonstrates the flux engineering technique, which can orient in-plane crystal texture and morphology of crystalline nanocolumns on amorphous substrates. This control is a useful addition to vapor–solid, physical self-assembly with the potential to improve the performance of porous thin film architectures as biaxial buffer layers, and in a variety of device applications such as photovoltaics and energy storage.</abstract><cop>Washington,DC</cop><pub>American Chemical Society</pub><doi>10.1021/cg300469s</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2012-07, Vol.12 (7), p.3661-3667
issn 1528-7483
1528-7505
language eng
recordid cdi_crossref_primary_10_1021_cg300469s
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Materials science
Methods of nanofabrication
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Physics
Porous materials
granular materials
Self-assembly
Specific materials
Structure of solids and liquids
crystallography
title Flux Engineering To Control In-Plane Crystal and Morphological Orientation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flux%20Engineering%20To%20Control%20In-Plane%20Crystal%20and%20Morphological%20Orientation&rft.jtitle=Crystal%20growth%20&%20design&rft.au=LaForge,%20Joshua%20M&rft.date=2012-07-03&rft.volume=12&rft.issue=7&rft.spage=3661&rft.epage=3667&rft.pages=3661-3667&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/cg300469s&rft_dat=%3Cacs_cross%3Eb121338871%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a355t-3e863c5015d2e19ca2d3bddc62b96ea9df59bf76eb7f0497f1f5e00ad619f98d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true