Loading…
Glycine-Assisted Hydrothermal Synthesis of NiAl-Layered Double Hydroxide Nanostructures
Flower-like NiAl-layered double hydroxides (LDH) were successfully synthesized by a straightforward one-pot hydrothermal method using Ni(II) glycinate complex as a chemical precursor under extremely high basic conditions and soft hydrothermal conditions. Systematic screening of synthesis parameters...
Saved in:
Published in: | Crystal growth & design 2009-08, Vol.9 (8), p.3646-3654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flower-like NiAl-layered double hydroxides (LDH) were successfully synthesized by a straightforward one-pot hydrothermal method using Ni(II) glycinate complex as a chemical precursor under extremely high basic conditions and soft hydrothermal conditions. Systematic screening of synthesis parameters such as reaction time and hydrothermal process temperature was carried out. The materials have been thoroughly characterized via a set of techniques including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, chemical analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermal gravimetric analysis (TG). The results demonstrate that a too long reaction time value disrupts the flower-like microspheres and a too high temperature value is deleterious for the LDH structure. Transition mixed oxides with the same flower-like morphology were readily obtained by thermal treatment at a moderate temperature of the above LDH precursors. |
---|---|
ISSN: | 1528-7483 1528-7505 |
DOI: | 10.1021/cg900384n |