Loading…

Functionalization of Nanoscale Diamond Powder:  Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives

The reaction of nanoscale diamond (ND) powder with an elemental fluorine/hydrogen mixture at temperatures varying from 150 to 470 °C resulted in the high degree of ND surface fluorination yielding a fluoro-nanodiamond with up to 8.6 at. % fluorine content. The fluoro-nanodiamond was used as a precur...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2004-10, Vol.16 (20), p.3924-3930
Main Authors: Liu, Yu, Gu, Zhenning, Margrave, John L, Khabashesku, Valery N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The reaction of nanoscale diamond (ND) powder with an elemental fluorine/hydrogen mixture at temperatures varying from 150 to 470 °C resulted in the high degree of ND surface fluorination yielding a fluoro-nanodiamond with up to 8.6 at. % fluorine content. The fluoro-nanodiamond was used as a precursor for preparation of the series of functionalized nanodiamonds by subsequent reactions with alkyllithium reagents, diamines, and amino acids. The fluoro-nanodiamond and corresponding alkyl-, amino-, and amino acid-nanodiamond derivatives were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), and thermal gravimetry-mass spectrometry (TG-MS) measurements. In comparison with the pristine nanodiamond, all functionalized nanodiamonds show an improved solubility in polar organic solvents, e.g., alcohols and THF, and a reduced particle agglomeration. The developed methodology provides an efficient method for the chemical modification of nanodiamond powder, which enables a variety of engineering and biomedical applications of ND derivatives.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm048875q