Loading…

Extended Conjugation Platinum(II) Porphyrins for use in Near-Infrared Emitting Organic Light Emitting Diodes

A family of π-extended platinum(II) porphyrins has been synthesized and incorporated into solution processed polymer light emitting diodes (PLEDs) and vapor deposited multilayer organic light emitting diodes (OLEDs), giving rise to devices with peak emission ranging from 771 to 1005 nm. The longest...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2011-12, Vol.23 (24), p.5305-5312
Main Authors: Graham, Kenneth R, Yang, Yixing, Sommer, Jonathan R, Shelton, Abigail H, Schanze, Kirk S, Xue, Jiangeng, Reynolds, John R
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A family of π-extended platinum(II) porphyrins has been synthesized and incorporated into solution processed polymer light emitting diodes (PLEDs) and vapor deposited multilayer organic light emitting diodes (OLEDs), giving rise to devices with peak emission ranging from 771 to 1005 nm. The longest wavelength emitter, platinum(II)-5,10,15,20-(3,5-di-tert-butylphenyl)tetraanthroporphyrin (Pt-Ar4TAP), shows an emission maximum at 1005 nm, an external quantum efficiency (EQE) of 0.12%, and a maximum radiant emittance (R max) of 0.23 mW/cm2 in single layer PLED architectures, which is enhanced to an EQE of 0.20% with an R max of 0.57 mW/cm2 upon vapor deposition of an electron transport layer. In an effort to understand substituent effects and enhance the performance of π-extended Pt-porphyrins in PLEDs and OLEDs, a family of Pt-tetrabenzoporphyrins (Pt-TBPs) with varying functionality was investigated. The luminescent lifetimes of the Pt-TBPs in solution and in films were measured, and a strong correlation was demonstrated between the film lifetimes and the PLED and OLED efficiencies. An improvement in external quantum efficiency (EQE) from 2.07 to 2.49% for PLEDs and from 8.0 to 9.2% for OLEDs was observed between the less substituted Pt-tetraphenyltetrabenzoporphyrin and the more substituted Pt-5,10,15,20-(3,5-di-tert-butylphenyl)tetrabenzoporphyrin. The PLED EQEs were further enhanced to 3.02% with the disubstituted Pt-5,15-(3,5-di-tert-butylphenyl)tetrabenzoporphyrin; however, this increase was not observed for the OLEDs where an EQE of 7.8% was measured.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm202242x