Loading…
Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction
Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type. Th...
Saved in:
Published in: | Chemistry of materials 2012-05, Vol.24 (10), p.1796-1801 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type. The growth mechanisms as well as the roles of different components in the catalyst were studied in situ using environmental transmission electron microscopy and infrared spectroscopy. On the basis of the understanding of carbon nanotube growth mechanisms, an MgO-supported FeCu catalyst was prepared by impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm300308k |