Loading…

Self-Limiting Oxidation in Small-Diameter Si Nanowires

Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core–shell Si-NWs currently remains entirely unexplored. We report here...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2012-06, Vol.24 (11), p.2141-2147
Main Authors: Khalilov, U, Pourtois, G, Duin, A. C. T. van, Neyts, E. C
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553
cites cdi_FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553
container_end_page 2147
container_issue 11
container_start_page 2141
container_title Chemistry of materials
container_volume 24
creator Khalilov, U
Pourtois, G
Duin, A. C. T. van
Neyts, E. C
description Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core–shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core | ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiO x (x ≤ 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.
doi_str_mv 10.1021/cm300707x
format article
fullrecord <record><control><sourceid>acs_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1021_cm300707x</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c233320742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553</originalsourceid><addsrcrecordid>eNptzztLxEAUBeBBFIyrhf8gjYXF6J33pJT1CcEtonWYSW5kljxkJuL6742sWFmd5uNwDiHnDK4YcHbdDALAgNkdkIwpDlQB8EOSgS0MlUbpY3KS0haALdxmRFfYd7QMQ5jD-JZvdqF1c5jGPIx5Nbi-p7fBDThjzKuQP7tx-gwR0yk56lyf8Ow3V-T1_u5l_UjLzcPT-qakTnA1U-WdQa2ZEJ5Z26D3YFtptOS-ACysblqGoFptBHgEFF5aL5VH2XImlRIrcrnvbeKUUsSufo9hcPGrZlD_HK7_Di_2Ym9dk-rt9BHHZdk_7hvsj1NH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-Limiting Oxidation in Small-Diameter Si Nanowires</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Khalilov, U ; Pourtois, G ; Duin, A. C. T. van ; Neyts, E. C</creator><creatorcontrib>Khalilov, U ; Pourtois, G ; Duin, A. C. T. van ; Neyts, E. C</creatorcontrib><description>Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core–shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core | ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiO x (x ≤ 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm300707x</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2012-06, Vol.24 (11), p.2141-2147</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553</citedby><cites>FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Khalilov, U</creatorcontrib><creatorcontrib>Pourtois, G</creatorcontrib><creatorcontrib>Duin, A. C. T. van</creatorcontrib><creatorcontrib>Neyts, E. C</creatorcontrib><title>Self-Limiting Oxidation in Small-Diameter Si Nanowires</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core–shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core | ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiO x (x ≤ 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptzztLxEAUBeBBFIyrhf8gjYXF6J33pJT1CcEtonWYSW5kljxkJuL6742sWFmd5uNwDiHnDK4YcHbdDALAgNkdkIwpDlQB8EOSgS0MlUbpY3KS0haALdxmRFfYd7QMQ5jD-JZvdqF1c5jGPIx5Nbi-p7fBDThjzKuQP7tx-gwR0yk56lyf8Ow3V-T1_u5l_UjLzcPT-qakTnA1U-WdQa2ZEJ5Z26D3YFtptOS-ACysblqGoFptBHgEFF5aL5VH2XImlRIrcrnvbeKUUsSufo9hcPGrZlD_HK7_Di_2Ym9dk-rt9BHHZdk_7hvsj1NH</recordid><startdate>20120612</startdate><enddate>20120612</enddate><creator>Khalilov, U</creator><creator>Pourtois, G</creator><creator>Duin, A. C. T. van</creator><creator>Neyts, E. C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120612</creationdate><title>Self-Limiting Oxidation in Small-Diameter Si Nanowires</title><author>Khalilov, U ; Pourtois, G ; Duin, A. C. T. van ; Neyts, E. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalilov, U</creatorcontrib><creatorcontrib>Pourtois, G</creatorcontrib><creatorcontrib>Duin, A. C. T. van</creatorcontrib><creatorcontrib>Neyts, E. C</creatorcontrib><collection>CrossRef</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalilov, U</au><au>Pourtois, G</au><au>Duin, A. C. T. van</au><au>Neyts, E. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-Limiting Oxidation in Small-Diameter Si Nanowires</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2012-06-12</date><risdate>2012</risdate><volume>24</volume><issue>11</issue><spage>2141</spage><epage>2147</epage><pages>2141-2147</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core–shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core | ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiO x (x ≤ 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm300707x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2012-06, Vol.24 (11), p.2141-2147
issn 0897-4756
1520-5002
language eng
recordid cdi_crossref_primary_10_1021_cm300707x
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Self-Limiting Oxidation in Small-Diameter Si Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-Limiting%20Oxidation%20in%20Small-Diameter%20Si%20Nanowires&rft.jtitle=Chemistry%20of%20materials&rft.au=Khalilov,%20U&rft.date=2012-06-12&rft.volume=24&rft.issue=11&rft.spage=2141&rft.epage=2147&rft.pages=2141-2147&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm300707x&rft_dat=%3Cacs_cross%3Ec233320742%3C/acs_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-5ba7e66133b188cebb08d47642b90e986cd1e05d6730be0e3b48b45be4d214553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true